Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38932308

RESUMEN

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the COVID-19 pandemic, has profoundly impacted global healthcare systems and the trajectory of economic advancement. As nations grapple with the far-reaching consequences of this unprecedented health crisis, the administration of COVID-19 vaccines has proven to be a pivotal strategy in managing this crisis. Protein-based vaccines have garnered significant attention owing to their commendable safety profile and precise immune targeting advantages. Nonetheless, the unpredictable mutations and widespread transmission of SARS-CoV-2 have posed challenges for vaccine developers and governments worldwide. Monovalent and multivalent vaccines represent two strategies in COVID-19 vaccine development, with ongoing controversy surrounding their efficacy. This review concentrates on the development of protein-based COVID-19 vaccines, specifically addressing the transition from monovalent to multivalent formulations, and synthesizes data on vaccine manufacturers, antigen composition, pivotal clinical study findings, and other features that shape their distinct profiles and overall effectiveness. Our hypothesis is that multivalent vaccine strategies for COVID-19 could offer enhanced capability with broad-spectrum protection.

2.
Vaccines (Basel) ; 12(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38400158

RESUMEN

The Omicron EG.5 lineage of SARS-CoV-2 is currently on a trajectory to become the dominant strain. This phase 2 study aims to evaluate the immunogenicity of SCTV01E-2, a tetravalent protein vaccine, with a specific emphasis on its immunogenicity against Omicron EG.5, comparing it with its progenitor vaccine, SCTV01E (NCT05933512). As of 12 September 2023, 429 participants aged ≥18 years were randomized into the groups SCTV01E (N = 215) and SCTV01E-2 (N = 214). Both vaccines showed increases in neutralizing antibody (nAb) against Omicron EG.5, with a 5.7-fold increase and a 9.0-fold increase in the SCTV01E and SCTV01E-2 groups 14 days post-vaccination, respectively. The predetermined statistical endpoints were achieved, showing that the geometric mean titer (GMT) of nAb and the seroresponse rate (SRR) against Omicron EG.5 were significantly higher in the SCTV01E-2 group than in the SCTV01E group. Additionally, SCTV01E and SCTV01E-2 induced a 5.5-fold and a 5.9-fold increase in nAb against XBB.1, respectively. Reactogenicity was generally mild and transient. No vaccine-related serious adverse events (SAEs), adverse events of special interest (AESIs), or deaths were reported. In summary, SCTV01E-2 elicited robust neutralizing responses against Omicron EG.5 and XBB.1 without raising safety concerns, highlighting its potential as a versatile COVID-19 vaccine against SARS-CoV-2 variants.

3.
EClinicalMedicine ; 64: 102195, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731938

RESUMEN

Background: COVID-19 vaccines that offer broad-spectrum protection are needed. We aimed to evaluate the safety and immunogenicity of multivalent vaccines, SCTV01E and SCTV01C, and compare them with an inactivated vaccine. Methods: In the phase 3 trial (ClinicalTrials.gov: NCT05323461), adult participants previously vaccinated with Sinopharm's inactivated SARS-CoV-2 vaccine (BBBIP-CorV) were assigned to receive one booster dose of BBBIP-CorV, 20 µg SCTV01C, or 30 µg SCTV01E. The primary endpoint was to evaluate the geometric mean titers (GMT) of neutralizing antibody (nAb) against the Delta and Omicron BA.1 variants on day 28 after injection. Additional endpoints included GMTs of nAb against Delta (B.1.617.2) and Omicron BA.1 variants on day 180, GMTs against BA.5 on day 28, as well as solicited adverse events (AEs) within seven days, unsolicited AEs within 28 days, and serious AEs, AEs of special interest within 180 days after vaccination. Findings: Between May 30, 2022 and October 28, 2022, a total of 1351 participants were randomized to BBBIP-CorV, SCTV01C, or SCTV01E in a 1:1:1 ratio, with immunogenicity assessments performed on the first 300 participants. For BBBIP-CorV, SCTV01C, and SCTV01E groups, the day 28 GMTs of neutralizing antibody against Omicron BA.1 were a 2.38-, 19.37-, and 28.06-fold increase from baseline; the GMTs against Omicron BA.5 were 2.07-, 15.89- and 21.11-fold increases; the GMTs against Delta variants were 1.97-, 12.76-, and 15.88-fold increases, respectively. The day 28 geometric mean ratio (GMR) of SCTV01C/BBIBP-CorV for Omicron BA.1 was 6.49 (95% CI: 4.75, 8.88), while the GMR of SCTV01E/BBIBP-CorV was 9.56 (95% CI: 6.85, 13.33). For the Delta variant, the day 28 GMR of SCTV01C/BBIBP-CorV was 6.26 (95% CI: 4.78, 8.19), and the day 28 GMR of SCTV01E/BBIBP-CorV was 7.26 (95% CI: 5.51, 9.56). On Day 180, the GMTs against Omicron BA.1 were 2.80-, 9.51-, and 15.56-fold increase from baseline, while those against Delta were 1.58-, 5.49-, and 6.63-fold for BBBIP-CorV, SCTV01C, and SCTV01E groups, respectively. Subgroup analyses showed that SCTV01C and SCTV01E induced uniformly high GMTs against both BA.1 and BA.5, demonstrating its superiority over BBIBP-CorV, regardless of baseline GMT levels. Safety and reactogenicity were similar among the three vaccines. Most AEs were Grade 1 or 2. There were 15 ≥Grade 3 AEs: 6 in the BBIBP-CorV group, 4 in the SCTV01C group and 5 in the SCTV01E group. No SAE was reported and one grade 1 AESI (Bell's palsy) was observed in SCTV01C group. Interpretation: A booster dose of the tetravalent vaccine SCTV01E consistently induced high neutralizing antibody responses against Omicron BA.1, BA.5, and Delta variants, demonstrating superiority over inactivated vaccine. There is evidence to suggest that SCTV01E may have GMT superiority over bivalent vaccine SCTV01C against Delta, BA.1 and BA.5 variants. Funding: This study was sponsored by Sinocelltech Ltd., and funded by the Beijing Science and Technology Planning Project [Z221100007922012] and the National Key Research and Development Program of China [2022YFC0870600].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...