Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(28): eadn0929, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996015

RESUMEN

Polar metals are challenging to identify spectroscopically because the fingerprints of electric polarization are often obscured by the presence of screening charges. Here, we unravel unambiguous signatures of a distortive polar order buried in the Fermi sea by probing the nonlinear optical response of materials driven by tailored terahertz fields. We apply this strategy to investigate the topological crystalline insulator Pb1-xSnxTe, tracking its soft phonon mode in the time domain and observing the occurrence of inversion symmetry breaking as a function of temperature. By combining measurements across the material's phase diagram with ab initio calculations, we demonstrate the generality of our approach. These results highlight the potential of terahertz driving fields to reveal polar orders coexisting with itinerant electrons, thus opening additional avenues for material discovery.

2.
Nature ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020169

RESUMEN

Helical spin structures are expressions of magnetically induced chirality, entangling the dipolar and magnetic orders in materials1-4. The recent discovery of helical van der Waals multiferroics down to the ultrathin limit raises prospects of large chiral magnetoelectric correlations in two dimensions5,6. However, the exact nature and magnitude of these couplings have remained unknown so far. Here we perform a precision measurement of the dynamical magnetoelectric coupling for an enantiopure domain in an exfoliated van der Waals multiferroic. We evaluate this interaction in resonance with a collective electromagnon mode, capturing the impact of its oscillations on the dipolar and magnetic orders of the material with a suite of ultrafast optical probes. Our data show a giant natural optical activity at terahertz frequencies, characterized by quadrature modulations between the electric polarization and magnetization components. First-principles calculations further show that these chiral couplings originate from the synergy between the non-collinear spin texture and relativistic spin-orbit interactions, resulting in substantial enhancements over lattice-mediated effects. Our findings highlight the potential for intertwined orders to enable unique functionalities in the two-dimensional limit and pave the way for the development of van der Waals magnetoelectric devices operating at terahertz speeds.

3.
Proc Natl Acad Sci U S A ; 121(11): e2304360121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457517

RESUMEN

The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin-orbit excitons (SOEs) in a quantum magnet CoTiO3 (CTO). Here, we report phonon properties resulting from a combination of strong spin-orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to two [Formula: see text] phonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons.

4.
Nano Lett ; 24(6): 1835-1842, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315833

RESUMEN

Strain engineering modifies the optical and electronic properties of atomically thin transition metal dichalcogenides. Highly inhomogeneous strain distributions in two-dimensional materials can be easily realized, enabling control of properties on the nanoscale; however, methods for probing strain on the nanoscale remain challenging. In this work, we characterize inhomogeneously strained monolayer MoS2 via Kelvin probe force microscopy and electrostatic gating, isolating the contributions of strain from other electrostatic effects and enabling the measurement of all components of the two-dimensional strain tensor on length scales less than 100 nm. The combination of these methods is used to calculate the spatial distribution of the electrostatic potential resulting from piezoelectricity, presenting a powerful way to characterize inhomogeneous strain and piezoelectricity that can be extended toward a variety of 2D materials.

5.
Nat Mater ; 23(1): 65-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37563291

RESUMEN

Moiré superlattices host a rich variety of correlated electronic phases. However, the moiré potential is fixed by interlayer coupling, and it is dependent on the nature of carriers and valleys. In contrast, it has been predicted that twisted hexagonal boron nitride (hBN) layers can impose a periodic electrostatic potential capable of engineering the properties of adjacent functional layers. Here, we show that this potential is described by a theory of electric polarization originating from the interfacial charge redistribution, validated by its dependence on supercell sizes and distance from the twisted interfaces. This enables controllability of the potential depth and profile by controlling the twist angles between the two interfaces. Employing this approach, we further demonstrate how the electrostatic potential from a twisted hBN substrate impedes exciton diffusion in semiconductor monolayers, suggesting opportunities for engineering the properties of adjacent functional layers using the surface potential of a twisted hBN substrate.

6.
Adv Mater ; 35(19): e2206585, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36849168

RESUMEN

A long-standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS3 have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature. Here, it is found that the polarization of maximal exciton emission rotates locally, revealing three possible spin chain directions. This discovery establishes a new understanding of the antiferromagnet order hidden in previous neutron scattering and optical experiments. Furthermore, defect-bound states are suggested as an alternative exciton formation mechanism that has yet to be explored in NiPS3 . The supporting evidence includes chemical analysis, excitation power, and thickness dependent photoluminescence and first-principles calculations. This mechanism for exciton formation is also consistent with the presence of strong phonon side bands. This study shows that anisotropic exciton photoluminescence can be used to read out local spin chain directions in antiferromagnets and realize multi-functional devices via spin-photon transduction.

7.
Opt Lett ; 47(14): 3479-3482, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838708

RESUMEN

By using a reflective-echelon-based electro-optic sampling technique and a fast detector, we develop a two-dimensional terahertz (THz) spectrometer capable of shot-to-shot balanced readout of THz waveforms at a full 1-kHz repetition rate. To demonstrate the capabilities of this new detection scheme for high-throughput applications, we use gas-phase acetonitrile as a model system to acquire two-dimensional THz rotational spectra. The results show a two-order-of-magnitude speedup in the acquisition of multidimensional THz spectra when compared to conventional delay-scan methods while maintaining accurate retrieval of the nonlinear THz signal. Our report presents a feasible solution for bringing the technique of multidimensional THz spectroscopy into widespread practice.

8.
Sci Adv ; 8(29): eabp9076, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35867789

RESUMEN

Nonequilibrium hidden states provide a unique window into thermally inaccessible regimes of strong coupling between microscopic degrees of freedom in quantum materials. Understanding the origin of these states allows the exploration of far-from-equilibrium thermodynamics and the development of optoelectronic devices with on-demand photoresponses. However, mapping the ultrafast formation of a long-lived hidden phase remains a longstanding challenge since the initial state is not recovered rapidly. Here, using state-of-the-art single-shot spectroscopy techniques, we present a direct ultrafast visualization of the photoinduced phase transition to both transient and long-lived hidden states in an electronic crystal, 1T-TaS2, and demonstrate a commonality in their microscopic pathways, driven by the collapse of charge order. We present a theory of fluctuation-dominated process that helps explain the nature of the metastable state. Our results shed light on the origin of this elusive state and pave the way for the discovery of other exotic phases of matter.

9.
Nano Lett ; 22(4): 1718-1725, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142222

RESUMEN

The continuous and concerted development of colloidal quantum dot light-emitting diodes over the past two decades has established them as a bedrock technology for the next generation of displays. However, a fundamental issue that limits the performance of these devices is the quenching of photoluminescence due to excess charges from conductive charge transport layers. Although device designs have leveraged various workarounds, doing so often comes at the cost of limiting efficient charge injection. Here we demonstrate that high-field terahertz (THz) pulses can dramatically brighten quenched QDs on metallic surfaces, an effect that persists for minutes after THz irradiation. This phenomenon is attributed to the ability of the THz field to remove excess charges, thereby reducing trion and nonradiative Auger recombination. Our findings show that THz technologies can be used to suppress and control such undesired nonradiative decay, potentially in a variety of luminescent materials for future device applications.

10.
Nat Nanotechnol ; 16(12): 1355-1361, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34811550

RESUMEN

Photoluminescence intermittency is a ubiquitous phenomenon, reducing the temporal emission intensity stability of single colloidal quantum dots (QDs) and the emission quantum yield of their ensembles. Despite efforts to achieve blinking reduction by chemical engineering of the QD architecture and its environment, blinking still poses barriers to the application of QDs, particularly in single-particle tracking in biology or in single-photon sources. Here, we demonstrate a deterministic all-optical suppression of QD blinking using a compound technique of visible and mid-infrared excitation. We show that moderate-field ultrafast mid-infrared pulses (5.5 µm, 150 fs) can switch the emission from a charged, low quantum yield grey trion state to the bright exciton state in CdSe/CdS core-shell QDs, resulting in a significant reduction of the QD intensity flicker. Quantum-tunnelling simulations suggest that the mid-infrared fields remove the excess charge from trions with reduced emission quantum yield to restore higher brightness exciton emission. Our approach can be integrated with existing single-particle tracking or super-resolution microscopy techniques without any modification to the sample and translates to other emitters presenting charging-induced photoluminescence intermittencies, such as single-photon emissive defects in diamond and two-dimensional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...