Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 255: 128235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981268

RESUMEN

Licorice was widely used in food and herbal medicine. In its extract industry, a substantial amount of licorice protein was produced and discarded as waste. Herein, we extracted Licorice Protein Isolate (LPI) and explored its potential as a curcumin nanocarrier. Using a pH-driven method, we fabricated LPI-curcumin nanoparticles with diameters ranging from 129.30 ± 3.21 nm to 75.03 ± 1.19 nm, depending on the LPI/curcumin molar ratio. The formation of LPI-curcumin nanoparticles was primarily driven by hydrophobic interactions, with curcumin entrapped in LPI being in an amorphous form. These nanoparticles significantly enhanced curcumin properties in terms of solubility, photochemical stability, and stability under varying pH, storage, and physiological conditions. Moreover, the loaded curcumin exhibited a 2.58-fold increase in cellular antioxidant activity on RAW 264.7 cells and a 1.86-fold increase in antitumor activity against HepG2 cells compared to its free form. These findings suggested that LPI could potentially serve as a promising novel delivery material.


Asunto(s)
Curcumina , Glycyrrhiza , Nanopartículas , Curcumina/farmacología , Curcumina/química , Solubilidad , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Tamaño de la Partícula , Portadores de Fármacos/química
2.
Food Chem ; 408: 135249, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566546

RESUMEN

Fish oil is increasingly utilised in the form of nano-emulsion as a nutrient and function fortifier. The nano-emulsions exceptionally high content of polyunsaturated fatty acids and electron donors at the oil/water interface provide an ideal site of the redox reaction. Here we report that a vigorous superoxide production in the fish oil nano-emulsion was catalysed by mammalian catalase in acellular and cellular systems. The resulting superoxide increased cytosolic reactive oxygen species (ROS) and membrane lipid peroxidation of murine macrophage, which eventually causes fatal oxidative damages. Cell death, was significantly inhibited by a catalase-specific inhibitor 3-Amino-1,2,4-triazole (3-AT), was via ferroptosis and not apoptosis. The ferroptosis was independent of free iron or glutathione peroxidase suppression. Our findings discovered a hidden health risk of the widely acclaimed fish oil emulsion, suggesting a novel cellular damage mechanism caused by dietary unsaturated fats on the alimentary tract mucosa.


Asunto(s)
Ferroptosis , Aceites de Pescado , Ratones , Animales , Aceites de Pescado/farmacología , Superóxidos , Catalasa/metabolismo , Ácidos Grasos Insaturados/metabolismo , Grasas de la Dieta , Emulsiones , Peroxidación de Lípido , Mamíferos
3.
J Agric Food Chem ; 70(36): 11290-11300, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36039965

RESUMEN

Here, the mechanism of vasorelaxant Mas receptor (MasR) expression elevated by hesperidin in spontaneously hypertensive rats was investigated in human umbilical vein endothelial cells (HUVECs). HUVECs were cultured with 1 µM hesperidin for 2 h, following the measurements of nitric oxide (NO) production and vasomotor-related receptors' expression. Hesperidin significantly promoted NO production (224.1 ± 18.3%, P < 0.01 vs control) in the HUVECs. Only the MasR expression was upregulated (141.2 ± 12.5%, P < 0.05 vs control), whereas a MasR antagonist did not alter the hesperidin-induced NO production. When a transient receptor potential vanilloid 1 (TRPV1) was knocked down by silencing RNA or Ca2+/calmodulin-dependent kinase II (CaMKII) and p38 mitogen-activated protein kinase (p38 MAPK) were inhibited, the increased MasR expression by hesperidin was abrogated. The inhibitions of CaMKII and endothelial NO synthase (eNOS) abolished the hesperidin-induced NO production. The structure-activity relationship analysis of flavonoids demonstrated that the B ring of the twisted flavonoid skeleton with a hydroxy group at the 3' position was a crucial factor for TRPV1 stimulation. Taken together, it was demonstrated that hesperidin may stimulate TRPV1-mediated cascades, leading to the activation of two signaling axes, CaMKII/p38 MAPK/MasR expression and CaMKII/eNOS/NO production in HUVECs.


Asunto(s)
Hesperidina , Óxido Nítrico , Canales Catiónicos TRPV/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Hesperidina/metabolismo , Hesperidina/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
NPJ Sci Food ; 6(1): 31, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739194

RESUMEN

How to maintain the physicochemical stability of oil emulsion has been one of the major challenges in food industry. Previously we reported the demulsification effects of catalase in the fish oil emulsion. In comparison, the influences of other two metal ion-containing oxidoreductases, horseradish peroxidase (HRP) and copper/zinc superoxide dismutase (SOD), on the emulsion's stability were investigated. Submicron fish oil-in-water emulsion stabilized by polysorbate 80 was prepared by high-speed homogenization. Its physical stability was evaluated by visual and microscopic observation, turbidity and light scattering measurements, while chemical stability by the hydroperoxide content and lipid peroxidation. HRP demulsified the emulsion in a concentration-responsive manner after 3-7 days' incubation, resulting in a decreased turbidity and significant delamination. The enlargement of oil-polysorbate droplets and protein precipitates were confirmed by size distribution and TEM observation. HRP initially elevated the emulsion's hydroperoxide then decreased it while raising TBARS levels during 7-Day incubation. In contrary, SOD stabilized the emulsion physically and chemically. The demulsification was correspondingly attributed to the oxidation catalyzing activity of the peroxidase and the electrostatic and hydrophobic interaction between lipids and proteins. This study adds new insight to the influences of the two oxidoreductases on the stability, lipids and peroxides of food emulsions, proposes an exciting subject of elucidating the underlying mechanism.

5.
Front Nutr ; 9: 821404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35425794

RESUMEN

Daily foods contain a great number of self-assembled nanoparticles (NPs) which were incidentally produced during food processing. These food incidental NPs can directly access the human gastrointestinal tract in high frequency and large quantities. Limited reports were focused on whether and how these food incidental NPs affected the gastrointestinal tissues and gut microbiota. In the present study, bone soup and its NPs both significantly ameliorated colitis symptoms in dextran sulfate sodium (DSS)-induced mice and inhibited the release of pro-inflammatory cytokines. They also restored intestinal microbiota dysbiosis by improving the diversity and richness of intestinal microbiota and regulating community composition, such as a remarkable increase in Muribaculaceae, Alistipes, and Alloprevotella, and a decrease in Helicobacter. Moreover, the correlation analysis showed that pro-inflammatory cytokines were negatively correlated with Muribaculaceae, Alloprevotella, and Alistipes, but positively correlated with Helicobacter. These findings suggest that the food incidental NPs can influence human health through regulating the inflammation of the gastrointestinal tissues and the gut microbiota.

6.
Mol Biol Rep ; 49(3): 1817-1825, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34837149

RESUMEN

BACKGROUND: Short-chain fatty acids (SCFAs) are a group of microbial metabolites of undigested dietary fiber, protein and unabsorbed amino acids in the colon, well-known for their gut health promoting benefits. A relatively high intestinal level of valerate was found in the healthy human subjects. However, the intestinal protection effects and the underlying mechanism of valerate are waiting to be verified and elucidated. METHODS AND RESULTS: In the present study, valerate, a SCFAs mainly converted from proteins or amino acids, was demonstrated to promote intestinal barrier function at its physiological concentrations of 0-4 mM in the Caco-2 cell monolayer model of intestinal barrier using transepithelial electrical resistance (TEER) assay and paracellular permeability assay. Valerate achieved the maximum increase in the TEER at 2 mM and reduced the paracellular permeability. Its intestinal barrier function promoting activity is similar to that of butyrate, with a broader range of effective concentrations than the later. Through western blot analysis, this activity is linked to the valerate-induced AMPK activation and tight junctions (TJs) assembly, but not to the reinforced expression of TJs related proteins. CONCLUSIONS: It provides direct experimental evidence supporting valerate's function in intestinal health, implying the once under-valued function of valerate and its amino acid precursors. The valerate's role in regulating intestine homeostasis and its possible synergetic effects with other SCFAs warranted to be further investigated.


Asunto(s)
Uniones Estrechas , Valeratos , Células CACO-2 , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Permeabilidad , Uniones Estrechas/metabolismo , Valeratos/metabolismo , Valeratos/farmacología
7.
J Agric Food Chem ; 69(5): 1610-1618, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33501827

RESUMEN

Nanoparticles can be prepared by several sophisticated processes but until now, it cannot be prepared by simple home cooking. Here, we report that two incidental food nanoparticles (iFNPs) consisting of proteoglycans and phytosterols were isolated from soup made from freshwater clam (Corbicula fluminea Muller), a renowned folk remedy for liver problems in China and other parts of East Asia. These two bioactive iFNPs were obtained and characterized by anionic exchange chromatography coupled with multi-angle laser light scattering measurement. Their hydrodynamic diameters and ζ-potentials were 50 ± 0.2 nm and -28.0 mV and 67 ± 0.4 nm and -9.96 mV, respectively. FT-IR revealed that the proteoglycans in the particles contained α-type heteropolysaccharides. Both iFNPs were resistant to pH changes and separation by mechanical force but responsive to temperature changes. They effectively inhibited cholesterol uptake in vitro, which resonates with the traditional belief that freshwater clam soup provides hepatoprotective benefits. This study suggests that these two proteoglycan-lipid iFNPs are the active moieties and offers a supramolecular structure-based approach to study the function of such complex matrices derived from food.


Asunto(s)
Corbicula/química , Lípidos/química , Nanopartículas/química , Proteoglicanos/química , Animales , Culinaria , Agua Dulce , Mariscos/análisis , Espectroscopía Infrarroja por Transformada de Fourier
8.
Nanomaterials (Basel) ; 12(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35009980

RESUMEN

It has been revealed that numerous nanoparticles are formed during the boiling preparation of traditional Chinese medical decoctions and culinary soups. They may possess physiological effects different from those of constituent components and are worth paying attention to but are barely noticed and investigated as of yet. In this study, six groups of nanoparticles, whose size ranged from 57 to 300 nm, were successfully isolated from the decoction of Isatis indigotica Fort. root, according to their particle size by the means of size-exclusive chromatography. All of the obtained nanoparticles have a high content of polysaccharides, which distinguishes them from the disclosed BLG protein nanoparticles. They also have high similarities in other compositions, surface charge, and stimuli responses. However, four out of these six nanoparticles (F2, F3, F4, and F5) exhibited significant antiviral activity against influenza virus H1N1, and their antiviral activities and cytotoxicity towards MDCK cells varied with their sizes. It suggested that the antiviral efficacy of BLG decoction could also be from its nanoparticles besides its well-known antiviral phytochemicals. It also implied that the biological effects of these polysaccharide nanoparticles, including cytotoxicity and antiviral activity, may be correlative with the physicochemical properties, especially the particle size.

9.
Food Res Int ; 133: 109169, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32466946

RESUMEN

The physicochemical and oxidative stability of oil emulsion has been one of the major challenges in food industry. Factors influencing the emulsion stability have seemingly been exhaustedly elucidated, such as temperature, pH, salts, proteins, polysaccharides and digestive enzymes. Here we report the previously unrecognized influence of catalase on emulsion stability. Submicron oil-in-water fish oil emulsion was prepared by high speed homogenization in the presence of polysorbate 80. Influence of catalase on the emulsion's stability was investigated in comparison with its deactivated version and bovine serum albumin (BSA) by visual examination, turbidity and DLS measurement and TEM observation. Catalase demulsified the emulsion instantly in a concentration-responsive manner at concentrations higher than 0.8 µmol/L, resulting a decreased turbidity, oil flocculation and precipitation of the enzyme itself. Neither BSA nor the thermally inactivated CAT caused demulsification at the same speed, indicating that CAT's demulsification effect was attributed to its enzymatic activity rather than its general protein properties. The enlargement of oil-polysorbate droplets and precipitation of CAT were confirmed by both TEM and DLS. Furthermore, CAT's demulsification effect was found irrelevant of the lipid oxidation. This insight into catalase's influences on emulsion not only sheds lights on food processing and shelf-life, nutritional value and potential biological effects, but also presents an exciting challenge to elucidate the mechanism behind.


Asunto(s)
Aceites de Pescado , Polisorbatos , Catalasa , Emulsiones , Agua
10.
Int J Biol Macromol ; 159: 850-858, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32417539

RESUMEN

From the aqueous extract of Semen Armeniacae Amarum, a major protein isolate was purified and characterized as a novel member of the 11S globulin family, which is composed of three polypeptides linked by disulfide bond. Furthermore, the feasibility of using the isolated protein for fabricating nanocarriers was investigated. The results indicate that thermal treatment of the globulin induced the rearrangement of the disulfide bond to form homodimers of acid polypeptides during the formation of nanoparticles. The harvested nanoparticles produced by heat-induced assembly are spherical in shape, with an average size of 92 nm and exhibited low cytotoxicity to L-02 and MDCK cell lines. These nanoparticles are capable to encapsulate paclitaxel, estimated the maximum encapsulation efficiency of paclitaxel loaded to the nanoparticles was 92.6% and the maximum release of paclitaxel was 57.4%. This research suggests that the screening of traditional herbal extracts could provide a novel source of protein nanocarriers.


Asunto(s)
Aristolochiaceae/química , Nanopartículas/química , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Línea Celular , Fraccionamiento Químico , Fenómenos Químicos , Disulfuros , Portadores de Fármacos/química , Composición de Medicamentos , Peso Molecular , Paclitaxel/administración & dosificación
11.
Food Chem ; 320: 126625, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32203839

RESUMEN

The cellular antioxidant activity (CAA) assay is wildly used for quantifying antioxidant activities of foods and dietary supplements in vitro. Among various incubation and handling buffers used in different laboratories, the inconsistence in concentrations of ions, particularly calcium and magnesium, has somehow been neglected. We hired the Hank's balanced salt solution with or without calcium and magnesium to perform CAA assay in Caco-2 cells and HepG2 cells, evaluating the impacts of these cations. The absence of calcium and magnesium reduced intracellular ROS level and underestimated the CAA of quercetin, Trolox and catechin. The abnormally high extracellular calcium and magnesium can also produce inaccurate results. Hank's buffer is recommended to ensure the accuracy and reproducibility. It elucidates precautions must be taken on these cations' concentrations of the buffers while conducting CAA determinations on different types of cells and when comparing foods and beverages with various calcium/magnesium contents.


Asunto(s)
Antioxidantes/farmacología , Calcio/farmacología , Magnesio/farmacología , Calcio/química , Línea Celular Tumoral , Humanos , Magnesio/química , Quercetina , Reproducibilidad de los Resultados
12.
Food Chem ; 319: 126579, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32193061

RESUMEN

Food processing generates a large amount of self-assembled colloidal nanoparticles (NPs), which have defined structures and directly interact with macrophages. Their promising potential as a new source of functional NPs and a key to elucidate food-body interactions prompt the importance of the method development. This study attempts to apply capillary zone electrophoresis (CZE) in studying self-assembled nanoparticles in a real liquid food system of freshwater clam (Corbicula fluminea) soup, a popular delicacy in East Asia with proven hepatoprotective effects. The soup sample was satisfactorily separated into one nanoparticle fraction and multiple molecular fractions within five minutes by the single and rapid CZE analysis, which was of high repeatability (peak area RSD < 4%, migration time RSD < 1%) and accurate quantification with a linear area-number relationship in the range of (7.5-110) × 1011 particles/mL (R2 > 0.99). Therefore, CZE analysis can be an efficient tool for the investigation of self-assembled nanoparticles in real liquid food systems.


Asunto(s)
Electroforesis Capilar/métodos , Análisis de los Alimentos/métodos , Nanopartículas/análisis , Mariscos/análisis , Animales , Corbicula/química , Nanopartículas/química , Reproducibilidad de los Resultados
13.
Int J Biol Macromol ; 151: 781-786, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061848

RESUMEN

Bioactives can impact food function either by their dosage or by their forms of dispersion, though the latter remains mostly neglected. Here we report the incidental nanoparticles (iNPs) carrying hepatoprotective bioactives identified in freshwater clam (Corbicula fluminea Muller) soup, which is a folk remedy for liver conditions in East Asia. The soup was fractionated into two iNPs containing fractions with high yield (95.8%) in 35 min by gel chromatography. With hydrodynamic diameter (Dh) range from 40 nm to 149 nm, iNPs were mainly constituted by carbohydrates and proteins. Notably, the majority of bioactives, e.g. taurine (63.2%), ornithine (68.1%) and phytosterols (60.0%), was determined to be carried by the iNPs. It suggested a possible mechanism of elevated delivery and absorption of bioactives, explaining why the clam soup can work at the bioactive concentrations way lower than the individual compound. These iNPs have great potential to be developed into a functional food with most potent nutraceutical effects.


Asunto(s)
Corbicula/química , Nanopartículas/química , Polisacáridos/química , Proteínas/química , Aminoácidos/química , Animales , Coloides , Agua Dulce , Nanopartículas/ultraestructura , Análisis Espectral
14.
Free Radic Res ; 53(11-12): 1073-1083, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31631710

RESUMEN

Of all the aerobic respiration by-products, cytotoxic superoxide derived from mitochondrial-leaked electrons, is the only one known to be disposed of intracellularly. Is this fate the only destiny for mitochondrial-leaked electrons? When Cynomolgus monkeys were injected intravenously with reactive oxygen species (ROS) indicators, the connective tissues of dura mater, facial fascia, pericardium, linea alba, dorsa fascia and other body parts, emitted specific and intense fluorescent signals. Moreover, the fluorescent signals along the linea alba of SD rats, did not result from the local presence of ROS but from the interaction of ROS indicators with electrons flowing through this tissue. Furthermore, the electrons travelling along the linea alba of mice were revealed to originate from mitochondria. These data suggest that mitochondrial-leaked electrons may be transported extracellularly to a hitherto undescribed system of connective tissues, which is pervasively networked, electrically conductive and metabolically related.


Asunto(s)
Especies Reactivas de Oxígeno/análisis , Pared Abdominal , Animales , Fluorescencia , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
15.
J Agric Food Chem ; 67(33): 9354-9361, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31339706

RESUMEN

As a popular ingredient for western and traditional Chinese medicine, the root and rhizome of Chinese licorice (Glycyrrhiza uralensis Fisch.) is often administered in the form of a decoction. The protein nanoparticles (NPs) self-assembled during the process of decoction. A major constitutive protein (GLP) was purified and determined to have a molecular weight of 28 kDa with an N-terminal sequence of NPDGL IACYC GQYCW. Over 80% of the purified GLP self-assembled into spherical NPs with diameters of 74.1 ± 0.7 nm and ζ-potential of -24.3 ± 1.7 mV when boiled in Tris-HCl buffer (pH = 7.9, 20 mM) at 100 °C for 60 min. Each nanoparticle was estimated by the SEC-MALLS approach to be composed of approximately 23 protein molecules. The NPs and GLP showed low cellular toxicity upon four types of cells including MDCK, L-02, HepG2, and Caco2 cells, while the NPs promoted proliferation of normal hepatocytes by 67%. The NPs solubilized the insoluble astragaloside IV by encapsulation. The results suggest a great potential for GLP-NPs as a promising prototype of a type of drug vehicle, a novel source of bioactive nanomaterials from herbal proteins, as well as a new mode of function with herbal components.


Asunto(s)
Glycyrrhiza/química , Nanopartículas/química , Extractos Vegetales/química , Proteínas de Plantas/química , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Calor , Humanos , Peso Molecular , Nanoestructuras/química , Extractos Vegetales/farmacología , Proteínas de Plantas/farmacología , Raíces de Plantas/química
16.
Biomed Res Int ; 2017: 9217912, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28798936

RESUMEN

The antidiabetic effects of Ge-Gen-Qin-Lian-Tang decoction (GQD) have been proven clinically. In a pharmacological study conducted on STZ-induced diabetic rats, the constitutive aggregates/sediments of Ge-Gen-Qin-Lian-Tang decoction exhibited stronger hypoglycemic and antioxidant activities compared to the soluble compositions. This study aims to demonstrate the pharmacological properties of aggregates derived from GQD by measuring permeability of the active monomer phytochemicals (e.g., baicalin) in a Caco-2 cell monolayer and determine the cellular viability, intracellular redox status (MDA and SOD), and insulin secretion of pancreatic ß-cell line, INS-1, following STZ-induced oxidative stress. The aggregates were separated into three fractions, namely, "MA (microaggregates)," "400 g supernatant," and "MNA (micro-/nanoaggregates)," by centrifugation at 400 ×g and 15000 ×g, respectively. Aggregates in the sediment increased baicalin absorption, showed little toxicity to ß-cells, elevated intracellular SOD levels, and significantly suppressed oxidative damage effects on cellular viability and functions. The "MA" fraction had a larger particle size and provided higher antioxidant cellular protection than "MNA" in vitro, implying that the sediments may be the active components in the herbal decoction. The actions of these micro-/nanoaggregates may provide a new perspective for understanding the antidiabetic effects of herbal decoctions and aid in interpretation of synergistic actions between the multiple components.


Asunto(s)
Antioxidantes , Medicamentos Herbarios Chinos/farmacología , Flavonoides , Hipoglucemiantes/farmacología , Absorción Intestinal/efectos de los fármacos , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Células CACO-2 , Medicamentos Herbarios Chinos/química , Flavonoides/farmacocinética , Flavonoides/farmacología , Humanos , Hipoglucemiantes/química
17.
J Tradit Complement Med ; 7(2): 178-187, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28417088

RESUMEN

Colloidal particles are essential components of sun-dried Isatis indigotica Fort. roots (Ban-Lan-Gen in Chinese, BLG) decoction. Nanoparticles (NPs) were isolated from BLG decoction with size exclusion chromatography and characterized. Their average diameter is ∼120 nm, reversibly responding to pH and temperature changes. They promoted the growth of normal cells but suppressed that of cancerogenic cells and macrophages. Two constitutive glycated proteins were identified from the NPs, namely BLGP1 and BLGP2. Their N-terminal amino acid sequences were V-X-R-E-V-V-K-D-I and V-V-R-E-V-V-K-D-I-A-G-A-V-Q-T-N-E-Q-Y. Their full-length cDNA sequences were cloned to obtain the highly homological amino acid sequences of non-glycated proteins, whose theoretical molecular weights are 21831.64 Da and 21841.67 Da. Using pepsin hydrolysis and mass spectrometry, four possible glycation adducts were identified in BLGP1, whereas one in BLGP2. To conclude, bioactive nanoparticles isolated from the herbal decoction are intelligent nanoassemblies composed of a new boiling-stable protein. Glycation plays a critical role in heat-induced formation of these nanoassemblies. The novel, intelligent, safe and stable nano-carriers for drug delivery may be developed using BLG NPs as prototype.

18.
NPJ Sci Food ; 1: 3, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31304245

RESUMEN

Like any typical food system, bone soup (or broth), a traditional nourishing food in many cultures, contains a colloid dispersion of self-assembled micro/nano-particles. Food ingestion results in the direct contact of food colloidal MNPs with immune cells. Will they ever interact with each other? To answer the question, MNPs and NPs were separated from porcine bone soup and labeled with Nile Red, and their uptake by murine oral macrophages and its consequent effects were investigated. Colloidal particle samples of UF-MNPs and SEC-NP were prepared from porcine bone soup by ultrafiltration (UF) and size-exclusion chromatography, respectively. Their mean hydrodynamic diameters were 248 ± 10 nm and 170 ± 1 nm with dominant composition of protein and lipid. Particles in both samples were found to be internalized by oral macrophages upon co-incubation at particle/cell ratios of 14,000/1. In normal oral macrophages, the particle uptake exerted influence neither on the cellular cytosolic membrane potential (V mem) nor mitochondrial superoxide level, as were indicated with fluorescent dyes of DiBAC4(3) and MitoSOX Red, respectively. However, when oral macrophages were challenged by peroxyl radical inducer AAPH, the engulfment of UF-MNPs and SEC-NPs mitigated the peroxyl radical induced membrane hyperpolarization effect by up to 70%, and the suppression on the oxygen respiration in mitochondria by up to 100%. Those results provide evidence of the direct interaction between food colloidal particles with immune cells, implying a possible new mode of food-body interaction.

19.
Nanoscale Res Lett ; 10(1): 449, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26586149

RESUMEN

Many herbal medicines and compositions are clinically effective but challenged by its safety risks, i.e., aconitine (AC) from aconite species. The combined use of Radix glycyrrhizae (licorice) with Radix aconite L. effectively eliminates toxicity of the later while increasing efficacy. In this study, a boiling-stable 31-kDa protein (namely GP) was purified from licorice and self-assembled into nanoparticles (206.2 ± 2.0 nm) at pH 5.0, 25 °C. The aconitine-encapsulated GP nanoparticles (238.2 ± 1.2 nm) were prepared following the same procedure and tested for its toxicity by intraperitoneal injection on ICR mouse (n = 8). Injection of GP-AC nanoparticles and the mixed licorice-aconite decoction, respectively, caused mild recoverable toxic effects and no death, while the aconitine, particle-free GP-AC mixture and aconite decoction induced sever toxic effects and 100 % death. Encapsulation of poisonous alkaloids into self-assembled herbal protein nanoparticles contributes to toxicity attenuation of combined use of herbs, implying a prototype nanostructure and a universal principle for the safer clinical applications of herbal medicines.

20.
Zhongguo Zhong Yao Za Zhi ; 40(4): 661-6, 2015 Feb.
Artículo en Chino | MEDLINE | ID: mdl-26137687

RESUMEN

The combination of Glycyrrhizae Radix et Rhizoma and Aconiti Lateralis Radix Preparata can increase efficacy and decrease toxicity. This study started from the phenomena of protein self-assembly in the mixed decoction of Glycyrrhizae Radix et Rhizoma with Aconiti Lateralis Radix Preparata. The attenuated mechanism was explored between the combination of Glycyrrhizae Radix et Rhizoma and Aconiti Lateralis Radix Preparata by using the protein of Glycyrrhizae Radix et Rhizoma and aconitine which was the major toxic component of Aconiti Lateralis Radix Preparata. Glycyrrhizae Radix et Rhizoma protein with aconitine could form stable particles which particle mean diameter was (206.2 ± 2.02) nm and (238.20 ± 1.23) nm at pH 5.0 in normal temperature. Through the mouse acute toxicity experiment found that injection of aconitine monomer all mice were killed, and injection of Glycyrrhizae Radix et Rhizoma protein-aconitine particles with the same content of aconitine all mice survived. Survey the stability of Glycyrrhizae Radix et Rhizoma protein-aconitine shows that the colloid particles is stable at room temperature, and it has the possibility to candidate drug carrier. Glycyrrhizae Radix et Rhizoma protein can reduce the toxicity of aconitine through self-assembly.


Asunto(s)
Aconitum/química , Medicamentos Herbarios Chinos/toxicidad , Glycyrrhiza/química , Proteínas de Plantas/química , Aconitum/toxicidad , Animales , Femenino , Glycyrrhiza/toxicidad , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/toxicidad , Rizoma/química , Rizoma/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...