Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.225
Filtrar
1.
Plant Physiol Biochem ; 216: 109116, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260263

RESUMEN

In recent years, the widespread application of growth regulators and nutrients to boost yield and quality of strawberry fruits has led to the rapid growth of strawberry industry globally. Although the effects of major nutrients on strawberry yield have been widely studied, investigations into the effect of trace elements such as boron remain limited. This study examined the effect of boron application on the yield and quality of "Benihoppe" strawberry fruits. Nutrient solutions with varying boron concentrations (0, 0.024, 0.048, 0.072, and 0.096 mM) were applied to the plants, and their effect on fruit quality was evaluated. The results indicated that boron application enhanced the yield per plant, nutrient composition (total amino acid and vitamin C content), antioxidant properties (total phenol) and volatile components (esters) in strawberry fruits. Specifically, treatment with 0.048 mM boron concentration significantly increased the accumulation of soluble sugars, such as sucrose, whose concentration was 154.29% higher than that of the control treated with 0 mM concentration. This enhancement is attributable to the regulated expression of sucrose phosphate synthase (maker-Fvb2-2-augustus-gene-229.38) and ß-fructofuranosidase-1/2/3 (augustus-masked-Fvb5-4-processed-gene-2.0, maker-Fvb5-3-augustus-gene-272.30, and maker-Fvb5-1-augustus-gene-0.37) genes, which play crucial roles in sugar metabolism and enzyme activity. Overall, boron application enhanced the quality of "Benihoppe" strawberries. The findings of this study offer substantial theoretical and practical guidance for using boron fertilizers in strawberry farming.

2.
Poult Sci ; 103(12): 104299, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39316987

RESUMEN

The occurrence of heat stress in poultry houses is inevitable and leads to oxidative stress in the birds. Lycopene, a natural hydrocarbon carotenoid, possesses potent antioxidant properties. This study aimed to investigate the impact of lycopene on growth performance, meat quality, cecal microflora, and liver metabolome in broilers subjected to heat stress. A total of 480 yellow feather broilers were randomly allocated into 4 treatment groups: birds fed standard diet (Con), birds fed standard diet and supplemented with lycopene (Lyc), birds fed standard diet and subjected to heat stress (Hs), and birds fed with lycopene and subjected to heat stress (Hs-Lyc). As compared with the normal temperature groups, Hs decreased the average daily gain (ADG) of birds during d 1 to 28, lowered the pH value either in breast meat or thigh meat, increased the L* value of breast meat, and decreased the a* value of thigh meat. In comparison with non-Lyc feeding birds, Lyc supplement elevated the ADG during d 1 to 56, increased the pH of breast meat, decrease the L* and b* values of thigh meat, simultaneously increase the a* value of thigh meat. The L* of breast meat and pH of thigh meat exhibited significant differences under Hs-Lyc treatment. Lyc-treated birds exhibited higher elasticity, gumminess, and resilience in breast meat than those in non-Lyc feeding birds. The cecal metagenome analysis indicated that Hs-Lyc treatment increased the abundance of Phocaeicola salanitronis and Prevotella sp.CAG:1058, Bacteroides sp.An269, and Bacteroides sp.An19 at the species level compared with other treatments. The hepatic untargeted metabolome analysis showed that administration of Lyc upregulated 20 metabolites and downregulated 60 metabolites compared to the Con birds. Futhermore, the Hs-Lyc treatment upregulated 34 metabolites and downregulated 45 metabolites compared to the Hs birds. The correlation between the metagenome and metabolome showed that Lyc supplementation induced significant alterations in the citrate cycle, metabolism of butanoate, glycolysis/gluconeogenesis, glyoxylate and dicarboxylate, alanine, aspartate, and glutamate compared with standard supplement. In contrast, Hs-Lyc treatment induced alterations in the citrate cycle, metabolism of pyruvate, glyoxylate, and dicarboxylate, glycolysis/gluconeogenesis, arginine, proline, alanine, aspartate, and glutamate compared with the standard supplement of heat-challenged broilers. In summary, dietary Lyc supplementation promoted the growth performance, changed the meat quality, modulated the cecal metagenome and hepatic metabolome in heat-stressed broilers.

3.
Nanoscale ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308319

RESUMEN

Direct visualization of the states originating from electron-electron interactions is of great importance for engineering the surface and interfacial properties of graphene-based quantum materials. For instance, the rotational symmetry breaking or nematic phase inferred from spectroscopic imaging has confirmed the existence of correlated states in a wide range of moiré materials. Here, we study the atomic-scale spatial distributions and symmetry of wave functions in gate-tunable twisted double bilayer graphene by employing scanning tunneling microscopy/spectroscopy and continuum model calculations. A series of spectroscopic imaging analyses are used to identify dominant symmetry breaking of the emergent states. Interestingly, in non-integer hole fillings, a completely new localized electronic state with rotational symmetry breaking is observed on the left side of the valence flat band. The degree of anisotropy is found to increase from the conduction flat band through the valence flat band to the new state. Our results provide an essential microscopic insight into the flat band and its adjacent state for a full understanding of their electric field response in twisted graphene systems.

4.
Nat Commun ; 15(1): 8177, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289362

RESUMEN

Vibrational energy transfer in collisions between ions and neutrals is a fundamental process in interstellar media, planetary atmospheres, and plasmas. The conventional wisdom is that glancing collisions with large impact parameters are forward-scattered with low vibrational excitation, while hard collisions with small impact parameters are sideway- or backward-scattered with relatively high vibrational excitation. Here, we report experimental observations with a three-dimensional velocity-map imaging crossed-beam apparatus in the inelastic scattering process Ar++N2(v'' = 0, J'')→Ar++N2(v', J'), where all the vibrationally excited N2 products are dominated by forward scattering, contradicting the textbook model. Trajectory surface hopping calculations not only reproduced the experimental observation qualitatively, but also revealed that the vibrational excitation mainly occurs through a transient charge-transfer process. The hard collision glory mechanism, which has so far only been observed in inelastic rotational energy transfer between neutrals, is shown to play a major role for vibrational excitation in the inelastic Ar++N2 collision, via the frustrated charge transfer process.

5.
Environ Sci Ecotechnol ; 22: 100477, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39280590

RESUMEN

Ozone (O3) pollution is usually linked to warm weather and strong solar radiation, making it uncommon in cold winters. However, an unusual occurrence of four high O3 episode days (with maximum hourly concentrations exceeding 100 ppbv and peaking at 121 ppbv) was recorded in January 2018 in Lanzhou city, China. During these episodes, the average daytime concentration of total non-methane volatile organic compounds (TVOCs) reached 153.4 ± 19.0 ppbv, with alkenes-largely emitted from the local petrochemical industry-comprising 82.3 ± 13.1 ppbv. Here we show a photochemical box model coupled with a Master Chemical Mechanism to elucidate the mechanisms behind this unusual wintertime O3 pollution. We find that the typically low temperatures (-1.7 ± 1.3 °C) and weak solar radiation (263.6 ± 60.7 W m- 2) of those winter episode days had a minimal effect on the reactivity of VOCs with OH radicals. Instead, the ozonolysis of alkenes generated Criegee intermediates, which rapidly decomposed into substantial RO x radicals (OH, HO2, and RO2) without sunlight. This radical production led to the oxidation of VOCs, with alkene ozonolysis ultimately contributing to 89.6 ± 8.7% of the O3 formation during these episodes. This mechanism did not activate at night due to the depletion of O3 by the NO titration effect. Furthermore, the findings indicate that a reduction of alkenes by 28.6% or NO x by 27.7% in the early afternoon could significantly mitigate wintertime O3 pollution. Overall, this study unravels the unique mechanism of alkene-induced winter O3 pollution and offers a reference for winter O3 reduction strategies in the petrochemical industrial regions.

6.
ACS Nano ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325018

RESUMEN

Domain boundaries (DBs) in charge density wave (CDW) systems not only are important for understanding the mechanism of how CDW interplays with other quantum phases but also have potential for future CDW-based nanodevices. However, current research on DBs in CDW materials has been mainly limited to those between homochiral CDW domains, whereas DBs between heterochiral CDW domains, especially in the atomic layers, remain largely unexplored. Here, we have studied the geometric and electronic states of heterochiral DBs in single-layer and bilayer 1T-NbSe2 using scanning tunneling microscopy/spectroscopy. We observe the existence of diverse CDW configurations in a single heterochiral CDW DB with atomic resolution and reveal the corresponding electronic states. In addition, interlayer stacking further enriches the electronic properties of the DB. Our results offer deep insights into the relationship between the detailed CDW nanostructures and electronic behaviors, which has significant implications for DB engineering in strongly correlated CDW systems and related nanodevices.

7.
Medicine (Baltimore) ; 103(37): e39528, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39287287

RESUMEN

BACKGROUND: In total hip arthroplasty (THA), the positioning of components holds critical importance for factors such as joint stability, polyethylene liner wear, and range of motion. This meta-analysis aimed to compare the effects of intraoperative fluoroscopy (IF) versus no use of IF on component positioning and the restoration of patient anatomy during THA. METHODS: We conducted our systematic review following the recommendations outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The literature search was performed from the inception of medical databases up to August 2023. PubMed, Embase, Web of Science, Cochrane Controlled Trials Register, Cochrane Library, Highwire, Wanfang, China National Knowledge Infrastructure (CNKI), China Biology Medicine Disc (CBM), and China Science and Technology Journal (CSTD) databases were systematically searched to identify relevant studies comparing IF versus no IF during primary THA. RESULTS: Thirteen studies involving 2195 patients (2207 hips) were incorporated in the Analysis. No statistically significant differences were observed between the groups in terms of acetabular cup inclination angle (ACIA, P = .9), ACIA within the safe zone rate (P = .87), acetabular cup anteversion angle (ACAA, P = .42), ACAA within the safe zone rate (P = .35), combined safe zone rate (P = .30), limb length difference (LLD, P = .13), dislocation rate (P = .76), and infection rate (P = .97). In comparison to the no fluoroscopy group, the IF group exhibited prolonged operation time (P < .00001) and reduced femoral component offset difference (FCOD, P = .03). CONCLUSION: IF did not demonstrate improvements in acetabular cup placement, limb length difference, or dislocation occurrence. Nonetheless, IF showed a significant enhancement in restoring femoral offset. It is noteworthy that surgeons operating in facilities with lower patient volumes may observe more pronounced benefits from IF.


Asunto(s)
Acetábulo , Artroplastia de Reemplazo de Cadera , Humanos , Artroplastia de Reemplazo de Cadera/métodos , Fluoroscopía/métodos , Acetábulo/cirugía , Acetábulo/diagnóstico por imagen , Prótesis de Cadera
8.
Environ Sci Technol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251583

RESUMEN

As a substitute for brominated flame retardants, organophosphate flame retardants (OPFRs) have become a global concern due to their high toxicity and bioaccumulation. To paint an overall picture of OPFRs in the global environment, the present study develops a gridded global emission inventory of OPFRs on a spatial resolution of 1 × 1° from 2010 to 2020. Revealing a 3.31% average annual increase in emissions, totaling 21,324.42 tons. The production process is the primary source, accounting for 55.43% of emissions, with consumption processes making up the rest. Major sources are in Asia, North America, and Europe. The inventory is verified by implementing emission data into a global atmospheric transport model to predict OPFR concentrations in the global environment and comparing modeled concentrations with field sampled data. The results indicate that the inventory is reliable except for the pristine polar region, where the emission inventory and modeled concentrations underestimate OPFR levels in the atmosphere, likely resulting from ignorance of chemical reactions and the secondary derivative of parent OPFRs during their global long-distance atmospheric transport in the model. This comprehensive data set aids in formulating OPFR emission control policies and assessing health risks.

9.
Acta Pharmacol Sin ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251858

RESUMEN

Ferroptosis, a form of cell death characterized by lipid peroxidation, is involved in neurodegenerative diseases such as Alzheimer´s disease (AD). Recent studies have shown that a first-line antimalarial drug artemisinin is effective to counteract AD pathology. In this study, we investigated the protective effect of artemisinin against neuronal ferroptosis and the underlying mechanisms. In hippocampal HT22 cells, pretreatment with artemisinin dose-dependently protected against Erastin-induced cell death with an EC50 value of 5.032 µM, comparable to the ferroptosis inhibitor ferrostatin-1 (EC50 = 4.39 µM). We demonstrated that artemisinin (10 µM) significantly increased the nuclear translocation of Nrf2 and upregulated SLC7A11 and GPX4 in HT22 cells. Knockdown of Nrf2, SLC7A11 or GPX4 prevented the protective action of artemisinin, indicating that its anti-ferroptosis effect is mediated by the Nrf2-SLC7A11-GPX4 pathway. Molecular docking and Co-Immunoprecipitation (Co-IP) analysis revealed that artemisinin competitively binds with KEAP1, promoting the dissociation of KEAP1-Nrf2 complex and inhibiting the ubiquitination of Nrf2. Intrahippocampal injection of imidazole-ketone-Erastin (IKE) induced ferroptosis in mice accompanied by cognitive deficits evidenced by lower preference for exploration of new objects and new object locations in the NOR and NOL tests. Artemisinin (5, 10 mg/kg, i.p.) dose-dependently inhibited IKE-induced ferroptosis in hippocampal CA1 region and ameliorated learning and memory impairments. Moreover, we demonstrated that artemisinin reversed Aß1-42-induced ferroptosis, lipid peroxidation and glutathione depletion in HT22 cells, primary hippocampal neurons, and 3×Tg mice via the KEAP1-Nrf2 pathway. Our results demonstrate that artemisinin is a novel neuronal ferroptosis inhibitor that targets KEAP1 to activate the Nrf2-SLC7A11-GPX4 pathway.

10.
Urol Case Rep ; 56: 102816, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39224665

RESUMEN

Prostate cancer rarely metastasizes to the stomach and kidneys. We report a 73-year-old male with such spread, highlighting significant clinical challenges. Initially diagnosed via biopsy and imaging, he received hormone therapy and cytoreductive radical prostatectomy. Despite initial management, the cancer progressed to metastatic castration-resistant prostate cancer, with gastric and renal metastases confirmed by imaging and biopsy. This case emphasizes the need for awareness of rare metastatic sites, comprehensive diagnostic evaluations, and further research into these atypical metastases to improve patient outcomes and develop better treatment strategies for managing advanced prostate cancer effectively.

11.
Int J Biol Macromol ; 278(Pt 1): 134526, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111469

RESUMEN

Accidents and surgical procedures inevitably lead to wounds, presenting clinical challenges such as inflammation and microbial infections that impede the wound-healing process. This study aimed to address these challenges by developing a series of novel wound dressings known as electrospun biomimetic nanofiber membranes. These membranes were prepared using electrostatic spinning technique, incorporating hydroxypropyl-ß-cyclodextrin/dihydromyricetin inclusion complexes. The prepared electrospun biomimetic nanofiber membranes exhibited randomly arranged fiber morphology with average fiber diameters ranging from 200 to 400 nm, resembling the collagen fibers in the native skin. These membranes demonstrated excellent biocompatibility, hemocompatibility, surface hydrophilicity, and wettability, while also releasing dihydromyricetin in a sustained manner. In vitro testing revealed that these membranes, loaded with hydroxypropyl-ß-cyclodextrin/dihydromyricetin inclusion complexes, displayed higher antioxidant potential and inhibitory effects against Staphylococcus aureus and Escherichia coli. Furthermore, these membranes significantly reduced the M1 phenotypic transition in RAW264.7 cells, even when stimulated by lipopolysaccharides, effectively restoring M2 polarization, thereby shortening the inflammatory period. Additionally, the in vivo wound healing effects of these membranes were validated. In conclusion, this study introduces a promising nanofiber membrane with diverse biological properties that holds promise for addressing various crucial aspects of the wound-healing process.


Asunto(s)
Quitosano , Flavonoles , Membranas Artificiales , Nanofibras , Cicatrización de Heridas , Nanofibras/química , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Animales , Ratones , Flavonoles/farmacología , Flavonoles/química , Células RAW 264.7 , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Biomimética/métodos , Vendajes
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1212-1216, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39192422

RESUMEN

OBJECTIVE: Serological and molecular biology methods were used to identify the blood type of a patient with forward and reverse ABO typing inconsistency, and to explore the genetic characteristics of this blood type. METHODS: The ABO phenotype of the proband was identified by tube method, and the ABO blood group genotype of the proband and her parents was determined by fluorescent PCR. The 7 exons of the ABO gene were directly sequenced and analyzed. RESULTS: According to preliminary serological identification, the ABO phenotype of this patient was Bel subtype. Genotyping tests showed that the ABO genotype of the proband and her father was B/O1 , and her mother was O1/O1. Sequencing of exons revealed novel heterozygous variations in exon 1: c.16_17delinsTGTTGCA. CONCLUSION: The Novel variations in exon 1 led to Bel subtype in the ABO blood group of the proband, and these variations are heritable.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Exones , Genotipo , Humanos , Sistema del Grupo Sanguíneo ABO/genética , Femenino , Tipificación y Pruebas Cruzadas Sanguíneas , Fenotipo , Variación Genética , Heterocigoto
13.
J Phys Chem Lett ; 15(34): 8620-8627, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39146524

RESUMEN

The radiative and photodissociative properties of the dicarbon molecule, C2, in high-lying electronic states are of utmost importance for modeling the photochemical processes that occur in various astronomical environments. Despite extensive spectroscopic studies in the last two centuries, the photodissociation properties of C2 are still largely unknown, particularly for quantum states in the vacuum ultraviolet (VUV) region. Here, the lifetimes of C2 for each individual rovibrational level in the recently identified 23Σg- state are measured for the first time using a VUV-pump-UV-probe photoionization scheme. The lifetimes are found to be strongly dependent on the rotational and vibrational quantum levels in the 23Σg- state. The strongly rotationally dependent lifetimes observed here indicate that the 23Σg- state may mainly undergo a predissociation process through couplings with nearby repulsive electronic states. The current observation could have important applications in modeling the interstellar medium and cometary comae.

14.
Front Pharmacol ; 15: 1442181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139645

RESUMEN

Fibrosis is a public health issue of great concern characterized by the excessive deposition of extracellular matrix, leading to the destruction of parenchymal tissue and organ dysfunction that places a heavy burden on the global healthcare system due to its high incidence, disability, and mortality. Salvianolic acid B (SalB) has positively affected various human diseases, including fibrosis. In this review, we concentrate on the anti-fibrotic effects of SalB from a molecular perspective while providing information on the safety, adverse effects, and drug interactions of SalB. Additionally, we discuss the innovative SalB formulations, which give some references for further investigation and therapeutic use of SalB's anti-fibrotic qualities. Even with the encouraging preclinical data, additional research is required before relevant clinical trials can be conducted. Therefore, we conclude with recommendations for future studies. It is hoped that this review will provide comprehensive new perspectives on future research and product development related to SalB treatment of fibrosis and promote the efficient development of this field.

15.
Nat Commun ; 15(1): 7234, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174520

RESUMEN

Pair density wave (PDW) is a distinct superconducting state characterized by a periodic modulation of its order parameter in real space. Its intricate interplay with the charge density wave (CDW) state is a continuing topic of interest in condensed matter physics. While PDW states have been discovered in cuprates and other unconventional superconductors, the understanding of diverse PDWs and their interactions with different types of CDWs remains limited. Here, utilizing scanning tunneling microscopy, we unveil the subtle correlations between PDW ground states and two distinct CDW phases - namely, anion-centered-CDW (AC-CDW) and hollow-centered-CDW (HC-CDW) - in 2H-NbSe2. In both CDW regions, we observe coexisting PDWs with a commensurate structure that aligns with the underlying CDW phase. The superconducting gap size, Δ(r), related to the pairing order parameter is in phase with the charge density in both CDW regions. Meanwhile, the coherence peak height, H(r), qualitatively reflecting the electron-pair density, exhibits a phase difference of approximately 2π/3 relative to the CDW. The three-fold rotational symmetry is preserved in the HC-CDW region but is spontaneously broken in the AC-CDW region due to the PDW state, leading to the emergence of nematic superconductivity.

16.
J Hepatol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181210

RESUMEN

BACKGROUND & AIMS: As the first approved medication for metabolic dysfunction-associated steatohepatitis (MASH), thyroid hormone receptor-beta (THR-ß) agonist MGL-3196 (Resmetirom) is highly spotlighted as the liver-directed, bioactive oral drug. However, it was also identified with remarkable heterogeneity of individual clinical efficacy and its interference with gut microbiota in host hepatoenteral circulation was still undocumented. METHODS: We compared MASH attenuation by MGL-3196 and its derivative drug HSK31679 between germ-free (GF) and specific-pathogen free (SPF) mice to evaluate the role of gut microbiota. Then cross-omics analyses of microbial metagenome, metabolome and single-cell RNA-sequencing were applied into the randomized, double-blind, placebo-controlled multiple-ascending-dose (MAD) cohort of HSK31679 treatment (n = 40), to comprehensively investigate the altered gut microbiota metabolism and circulating immune signatures. RESULTS: HSK31679 outperformed MGL-3196 in ameliorating MASH diet-induced steatohepatitis of SPF mice but not GF mice. In the MAD cohort of HSK31679, relative abundance of B. thetaiotaomicron was significantly enriched to impair glucosylceramide synthase (GCS)-catalyzed monoglucosylation of microbial Cer(d18:1/16:0) and Cer(d18:1/24:1). In stark contrast to the non-inferiority MASH resolution between MGL-3196 and HSK31679 for GFBTΔGCS mice, HSK31679 manifested superior steatohepatitis alleviation than MGL-3196 for GFBTWT mice, due to its steric hindrance with R123 and Y401 of gut microbial GCS. For participants with high fecal GCS activity, the administration of 160 mg HSK31679 induced a shift in peripheral compartments towards an immunosuppressive niche, characterized by decreased CD8α+ dendritic cells and MINCLE+ macrophages. CONCLUSIONS: This study provided novel insights into the indispensable gut microbiota for HSK31679 treatment, which revealed microbial GCS may serve as its prognostic biomarker of MASH treatment, as well as the new target for further strategies of microbiota-based MASH therapeutics. IMPACT AND IMPLICATIONS: Remarkable heterogeneity of individual clinical efficacy of THR-ß agonists and their interferences with microbiome in host hepatoenteral circulation are poorly understood. In our current germ-free mice models and randomized, double-blind multiple-dose cohort study, we identified microbial GCS as the prognostic biomarker of HSK31679 treatment, as well as the new target for further strategies of microbiota-based MASLD therapeutics.

17.
Cytotechnology ; 76(5): 533-546, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39188650

RESUMEN

Myocardial ischemia-reperfusion arrhythmia after cardiac surgery is common and seriously affects quality of life. Remote ischemic preconditioning can reduce the myocardial damage caused by severe ischemia. However, the underlying mechanism is not well understood. This study aimed to investigate the effects of exosomes derived from C2C12 mouse myoblasts after hypoxic preconditioning (HP) on ventricular conduction in hypothermic ischemia-reperfusion hearts. Myocardial ischemia-reperfusion model rats were established using the Langendorff cardiac perfusion system. Exosomes derived from normoxic (ExoA) and hypoxia-preconditioned (ExoB) C2C12 cells were injected into the jugular vein of the model rats. The time to heartbeat restoration, arrhythmia type and duration, and heart rate were recorded after myocardial ischemia-reperfusion. Conduction velocity on the surface of left ventricle was measured using a microelectrode array after 30 min of balanced perfusion, 15 min of reperfusion, and 30 min of reperfusion. Immunohistochemistry and western blotting were performed to determine the distribution and relative expression of connexin 43 (Cx43). ExoB contained more exosomes than ExoA, showing that HP stimulated the release of exosomes. The IR + ExoB group showed faster recovery of ventricular myocardial activity, a lower arrhythmia score, faster conduction velocity, and better electrical conductivity than the IR group. ExoB increased the expression of Cx43 and reduced its lateralization in the ventricular muscle. Our study showed that exosomes induced by hypoxic preconditioning can improve ventricular myocardial conduction and reperfusion arrhythmia in isolated hearts after hypothermic ischemia-reperfusion.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39145819

RESUMEN

Local intra-articular administration with minimal side effects and rapid efficacy is a promising strategy for treating osteoarthritis(OA). Most drugs are rapidly cleared from the joint space by capillaries and lymphatic vessels before free diffusion into cartilage. Ultrasound, as a non-invasive therapy, enhances molecular transport within cartilage through the mechanisms of microbubble cavitation and thermal effects. This study investigated the mass transfer behavior of solute molecules with different molecular weights (479 Da, 40 kDa, 150 kDa) within porcine articular cartilage under low-frequency ultrasound conditions of 40 kHz and ultrasound intensities of 0.189 W/cm2 and 0.359 W/cm2. The results revealed that under the conditions of 0.189 W/cm2 ultrasound intensity, the mass transfer concentration of solute molecules were higher compared to passive diffusion, and with an increase in ultrasound intensity to 0.359 W/cm2, the mass transfer effect within the cartilage was further enhanced. Ultrasound promotes molecular transport in different layers of cartilage. Under static conditions, after 2 h of mass transfer, the concentration of small molecules in the superficial layer is lower than that in the middle layer. After applying ultrasound at 0.189 W/cm2, the molecular concentration in the superficial layer significantly increases. Under conditions of 0.359 W/cm2, after 12 h of mass transfer, the concentration of medium and large molecules in the deep layer region increased by more than two times. In addition, this study conducted an assessment of damage to porcine articular cartilage under ultrasound exposure, revealing the significant potential of low-frequency, low-intensity ultrasound in drug delivery and treatment of OA.

19.
Inflammation ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154088

RESUMEN

Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.

20.
Nat Nanotechnol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209998

RESUMEN

Artificial quantum systems have emerged as platforms to realize topological matter in a well-controlled manner. So far, experiments have mostly explored non-interacting topological states, and the realization of many-body topological phases in solid-state platforms with atomic resolution has remained challenging. Here we construct topological quantum Heisenberg spin lattices by assembling spin chains and two-dimensional spin arrays from spin-1/2 Ti atoms on an insulating MgO film in a scanning tunnelling microscope. We engineer both topological and trivial phases of the quantum spin model and thereby realize first- and second-order topological quantum magnets. We probe the many-body excitations of the quantum magnets by single-atom electron spin resonance with an energy resolution better than 100 neV. Making use of the atomically localized magnetic field of the scanning tunnelling microscope tip, we visualize various many-body topological bound modes including topological edge states, topological defects and higher-order corner modes. Our results provide a bottom-up approach for the simulation of exotic quantum many-body phases of interacting spins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA