Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cancer Gene Ther ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122832

RESUMEN

HER2-positive (HER2+) breast cancer accounts for 20-30% of all breast cancers. Although trastuzumab has significantly improved the survival of patients with HER2+ breast cancer, more than 70% of patients develop drug resistance within one year of treatment. Differential-gene-expression analysis of trastuzumab-sensitive and resistant HER2+ breast cancer cell lines from GSE15043 was performed to identify the biomarkers associated with trastuzumab resistance. Differential biomarker expression was confirmed in FFPE tissues collected from clinical HER2+ breast cancer tumor samples that were sensitive or resistant to trastuzumab treatment. UGT1A7, a member of the uronic acid transferase family, was associated with trastuzumab resistance. UGT1A7 expression was downregulated in trastuzumab-resistant tumor tissues and in a cell line that developed trastuzumab resistance (BT474TR). Overexpressing UGT1A7 in BT474TR restored their sensitivity to trastuzumab treatment, whereas downregulating UGT1A7 expression in parental cells led to trastuzumab resistance. Importantly, UGT1A7 localized to the endoplasmic reticulum and altered stress responses. Furthermore, downregulating UGT1A7 expression promoted epithelial-to-mesenchymal transition (EMT) by affecting TWIST, SNAIL, and GRP78 expression and the AMP-activated protein kinase signaling pathway, thus contributing to trastuzumab resistance. This study demonstrated the important role and novel mechanisms of UGT1A7 in tumor responses to trastuzumab. Low UGT1A7 expression plays an important role in EMT and contributes to trastuzumab resistance. UGT1A7 has the potential to be developed as a biomarker for identifying patients who are resistant to trastuzumab treatment.

2.
Breast Cancer Res ; 26(1): 111, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965614

RESUMEN

BACKGROUND: Endocrine therapy is the most important treatment modality of breast cancer patients whose tumors express the estrogen receptor α (ERα). The androgen receptor (AR) is also expressed in the vast majority (80-90%) of ERα-positive tumors. AR-targeting drugs are not used in clinical practice, but have been evaluated in multiple trials and preclinical studies. METHODS: We performed a genome-wide study to identify hormone/drug-induced single nucleotide polymorphism (SNP) genotype - dependent gene-expression, known as PGx-eQTL, mediated by either an AR agonist (dihydrotestosterone) or a partial antagonist (enzalutamide), utilizing a previously well characterized lymphoblastic cell line panel. The association of the identified SNPs-gene pairs with breast cancer phenotypes were then examined using three genome-wide association (GWAS) studies that we have published and other studies from the GWAS catalog. RESULTS: We identified 13 DHT-mediated PGx-eQTL loci and 23 Enz-mediated PGx-eQTL loci that were associated with breast cancer outcomes post ER antagonist or aromatase inhibitors (AI) treatment, or with pharmacodynamic (PD) effects of AIs. An additional 30 loci were found to be associated with cancer risk and sex-hormone binding globulin levels. The top loci involved the genes IDH2 and TMEM9, the expression of which were suppressed by DHT in a PGx-eQTL SNP genotype-dependent manner. Both of these genes were overexpressed in breast cancer and were associated with a poorer prognosis. Therefore, suppression of these genes by AR agonists may benefit patients with minor allele genotypes for these SNPs. CONCLUSIONS: We identified AR-related PGx-eQTL SNP-gene pairs that were associated with risks, outcomes and PD effects of endocrine therapy that may provide potential biomarkers for individualized treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Receptores Androgénicos , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Dihidrotestosterona/farmacología , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Nitrilos/uso terapéutico , Genotipo , Farmacogenética/métodos , Variantes Farmacogenómicas , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Hormonales/farmacología , Benzamidas
3.
medRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38947067

RESUMEN

Background: Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. Inflammation and mitochondrial dysfunction are the most common histopathological findings. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM patients, highlighting sex differences. Methods: We included 38 IBM patients and 22 age- and sex-matched controls without myopathy. Bulk RNA sequencing, Meso Scale Discovery ELISA, western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. Results: We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome pathway being the most upregulated. On muscle histopathology, there is increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibers. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 activation. In the IBM muscle samples, we showed altered mitophagy, most significantly in males, with elevated levels of p-S65-Ubiquitin, a mitophagy marker. Furthermore, p-S65-Ubiquitin aggregates accumulated in muscle fibers that were mostly type 2 and devoid of cytochrome-c-oxidase reactivity. Type 2 muscle fibers are known to be more prone to mitochondrial dysfunction. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes but with loss of in muscle strength only in males. Finally, we identified sex-specific molecular pathways in IBM, with females having activation of pathways that could offset some of the pathomechanisms of IBM. Conclusions: NLRP3 inflammasome is activated in IBM, along with altered mitophagy particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.

4.
ACS Infect Dis ; 10(8): 2775-2784, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38876983

RESUMEN

Francisella tularensis is a Gram-negative facultative intracellular bacterial pathogen that is classified by the Centers for Disease Control and Prevention as a Tier 1 Select Agent. F. tularensis infection causes the disease tularemia, also known as rabbit fever. Treatment of tularemia is limited to few effective antibiotics which are associated with high relapse rates, toxicity, and potential emergence of antibiotic-resistant strains. Consequently, new therapeutic options for tularemia are needed. Through screening a focused chemical library and subsequent structure-activity relationship studies, we have discovered a new and potent inhibitor of intracellular growth of Francisella tularensis, D8-03. Importantly, D8-03 effectively reduces bacterial burden in mice infected with F. tularensis. Preliminary mechanistic investigations suggest that D8-03 works through a potentially novel host-dependent mechanism and serves as a promising lead compound for further development.


Asunto(s)
Antibacterianos , Francisella tularensis , Tularemia , Francisella tularensis/efectos de los fármacos , Francisella tularensis/crecimiento & desarrollo , Animales , Tularemia/tratamiento farmacológico , Tularemia/microbiología , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Relación Estructura-Actividad , Humanos , Pruebas de Sensibilidad Microbiana , Descubrimiento de Drogas , Femenino , Modelos Animales de Enfermedad
5.
Front Oncol ; 14: 1343091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884087

RESUMEN

Cancer is typically treated with combinatorial therapy, and such combinations may be synergistic. However, discovery of these combinations has proven difficult as brute force combinatorial screening approaches are both logistically complex and resource-intensive. Therefore, computational approaches to augment synergistic drug discovery are of interest, but current approaches are limited by their dependencies on combinatorial drug screening training data or molecular profiling data. These dataset dependencies can limit the number and diversity of drugs for which these approaches can make inferences. Herein, we describe a novel computational framework, ReCorDE (Recurrent Correlation of Drugs with Enrichment), that uses publicly-available cell line-derived monotherapy cytotoxicity datasets to identify drug classes targeting shared vulnerabilities across multiple cancer lineages; and we show how these inferences can be used to augment synergistic drug combination discovery. Additionally, we demonstrate in preclinical models that a drug class combination predicted by ReCorDE to target shared vulnerabilities (PARP inhibitors and Aurora kinase inhibitors) exhibits class-class synergy across lineages. ReCorDE functions independently of combinatorial drug screening and molecular profiling data, using only extensive monotherapy cytotoxicity datasets as its input. This allows ReCorDE to make robust inferences for a large, diverse array of drugs. In conclusion, we have described a novel framework for the identification of drug classes targeting shared vulnerabilities using monotherapy cytotoxicity datasets, and we showed how these inferences can be used to aid discovery of novel synergistic drug combinations.

6.
Cell ; 187(2): 294-311.e21, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38128537

RESUMEN

Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.


Asunto(s)
Proteínas de Unión al ADN , Proteína Homóloga de MRE11 , Reparación del ADN por Recombinación , Humanos , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Recombinación Homóloga , Proteína Homóloga de MRE11/metabolismo , Ácido Láctico/metabolismo
7.
Circ Res ; 133(10): 810-825, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37800334

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of heart failure and carries a high mortality rate. Myocardial recovery in DCM-related heart failure patients is highly variable, with some patients having little or no response to standard drug therapy. A genome-wide association study may agnostically identify biomarkers and provide novel insight into the biology of myocardial recovery in DCM. METHODS: A genome-wide association study for change in left ventricular ejection fraction was performed in 686 White subjects with recent-onset DCM who received standard pharmacotherapy. Genome-wide association study signals were subsequently functionally validated and studied in relevant cellular models to understand molecular mechanisms that may have contributed to the change in left ventricular ejection fraction. RESULTS: The genome-wide association study identified a highly suggestive locus that mapped to the 5'-flanking region of the CDCP1 (CUB [complement C1r/C1s, Uegf, and Bmp1] domain containing protein 1) gene (rs6773435; P=7.12×10-7). The variant allele was associated with improved cardiac function and decreased CDCP1 transcription. CDCP1 expression was significantly upregulated in human cardiac fibroblasts (HCFs) in response to the PDGF (platelet-derived growth factor) signaling, and knockdown of CDCP1 significantly repressed HCF proliferation and decreased AKT (protein kinase B) phosphorylation. Transcriptomic profiling after CDCP1 knockdown in HCFs supported the conclusion that CDCP1 regulates HCF proliferation and mitosis. In addition, CDCP1 knockdown in HCFs resulted in significantly decreased expression of soluble ST2 (suppression of tumorigenicity-2), a prognostic biomarker for heart failure and inductor of cardiac fibrosis. CONCLUSIONS: CDCP1 may play an important role in myocardial recovery in recent-onset DCM and mediates its effect primarily by attenuating cardiac fibrosis.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Humanos , Cardiomiopatía Dilatada/metabolismo , Volumen Sistólico , Estudio de Asociación del Genoma Completo , Función Ventricular Izquierda , Fibrosis , Antígenos de Neoplasias/uso terapéutico , Moléculas de Adhesión Celular/metabolismo
8.
Cells ; 12(8)2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37190020

RESUMEN

Alzheimer's disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aß and pTau accumulation, improved synaptic and mitochondrial functions, and blocked neurodegeneration in symptomatic APP/PS1 mice, a translational model of AD. Here, using serial block-face scanning electron microscopy (SBFSEM) and three-dimensional (3D) EM reconstructions combined with Western blot analysis and next-generation RNA sequencing, we demonstrate that CP2 treatment also restores mitochondrial morphology and mitochondria-endoplasmic reticulum (ER) communication, reducing ER and unfolded protein response (UPR) stress in the APP/PS1 mouse brain. Using 3D EM volume reconstructions, we show that in the hippocampus of APP/PS1 mice, dendritic mitochondria primarily exist as mitochondria-on-a-string (MOAS). Compared to other morphological phenotypes, MOAS have extensive interaction with the ER membranes, forming multiple mitochondria-ER contact sites (MERCS) known to facilitate abnormal lipid and calcium homeostasis, accumulation of Aß and pTau, abnormal mitochondrial dynamics, and apoptosis. CP2 treatment reduced MOAS formation, consistent with improved energy homeostasis in the brain, with concomitant reductions in MERCS, ER/UPR stress, and improved lipid homeostasis. These data provide novel information on the MOAS-ER interaction in AD and additional support for the further development of partial MCI inhibitors as a disease-modifying strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Ratones Transgénicos , Enfermedad de Alzheimer/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Hipocampo/metabolismo , Lípidos
9.
Signal Transduct Target Ther ; 8(1): 183, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37160887

RESUMEN

Poly (ADP-ribose) polymerase (PARP) inhibitors are one of the most exciting classes of targeted therapy agents for cancers with homologous recombination (HR) deficiency. However, many patients without apparent HR defects also respond well to PARP inhibitors/cisplatin. The biomarker responsible for this mechanism remains unclear. Here, we identified a set of ribosomal genes that predict response to PARP inhibitors/cisplatin in HR-proficient patients. PARP inhibitor/cisplatin selectively eliminates cells with high expression of the eight genes in the identified panel via DNA damage (ATM) signaling-induced pro-apoptotic ribosomal stress, which along with ATM signaling-induced pro-survival HR repair constitutes a new model to balance the cell fate in response to DNA damage. Therefore, the combined examination of the gene panel along with HR status would allow for more precise predictions of clinical response to PARP inhibitor/cisplatin. The gene panel as an independent biomarker was validated by multiple published clinical datasets, as well as by an ovarian cancer organoids library we established. More importantly, its predictive value was further verified in a cohort of PARP inhibitor-treated ovarian cancer patients with both RNA-seq and WGS data. Furthermore, we identified several marketed drugs capable of upregulating the expression of the genes in the panel without causing HR deficiency in PARP inhibitor/cisplatin-resistant cell lines. These drugs enhance PARP inhibitor/cisplatin sensitivity in both intrinsically resistant organoids and cell lines with acquired resistance. Together, our study identifies a marker gene panel for HR-proficient patients and reveals a broader application of PARP inhibitor/cisplatin in cancer therapy.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Mutaciones Letales Sintéticas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Ribosomas
10.
Cancer Res ; 83(8): 1361-1380, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36779846

RESUMEN

Survival rates of patients with metastatic castration-resistant prostate cancer (mCRPC) are low due to lack of response or acquired resistance to available therapies, such as abiraterone (Abi). A better understanding of the underlying molecular mechanisms is needed to identify effective targets to overcome resistance. Given the complexity of the transcriptional dynamics in cells, differential gene expression analysis of bulk transcriptomics data cannot provide sufficient detailed insights into resistance mechanisms. Incorporating network structures could overcome this limitation to provide a global and functional perspective of Abi resistance in mCRPC. Here, we developed TraRe, a computational method using sparse Bayesian models to examine phenotypically driven transcriptional mechanistic differences at three distinct levels: transcriptional networks, specific regulons, and individual transcription factors (TF). TraRe was applied to transcriptomic data from 46 patients with mCRPC with Abi-response clinical data and uncovered abrogated immune response transcriptional modules that showed strong differential regulation in Abi-responsive compared with Abi-resistant patients. These modules were replicated in an independent mCRPC study. Furthermore, key rewiring predictions and their associated TFs were experimentally validated in two prostate cancer cell lines with different Abi-resistance features. Among them, ELK3, MXD1, and MYB played a differential role in cell survival in Abi-sensitive and Abi-resistant cells. Moreover, ELK3 regulated cell migration capacity, which could have a direct impact on mCRPC. Collectively, these findings shed light on the underlying transcriptional mechanisms driving Abi response, demonstrating that TraRe is a promising tool for generating novel hypotheses based on identified transcriptional network disruptions. SIGNIFICANCE: The computational method TraRe built on Bayesian machine learning models for investigating transcriptional network structures shows that disruption of ELK3, MXD1, and MYB signaling cascades impacts abiraterone resistance in prostate cancer.


Asunto(s)
Androstenos , Resistencia a Antineoplásicos , Redes Reguladoras de Genes , Aprendizaje Automático , Neoplasias de la Próstata , Teorema de Bayes , Transcripción Genética , Resistencia a Antineoplásicos/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Humanos , Masculino , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas Proto-Oncogénicas c-myb/genética , Androstenos/uso terapéutico , Perfilación de la Expresión Génica , Simulación por Computador
11.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36854302

RESUMEN

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Asunto(s)
Cromatina , Reparación del ADN , Animales , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mamíferos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Ciclo Celular/metabolismo
12.
Mol Cell ; 83(4): 539-555.e7, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36702126

RESUMEN

Replication protein A (RPA) is a major regulator of eukaryotic DNA metabolism involved in multiple essential cellular processes. Maintaining appropriate RPA dynamics is crucial for cells to prevent RPA exhaustion, which can lead to replication fork breakage and replication catastrophe. However, how cells regulate RPA availability during unperturbed replication and in response to stress has not been well elucidated. Here, we show that HNRNPA2B1SUMO functions as an endogenous inhibitor of RPA during normal replication. HNRNPA2B1SUMO associates with RPA through recognizing the SUMO-interacting motif (SIM) of RPA to inhibit RPA accumulation at replication forks and impede local ATR activation. Declining HNRNPA2SUMO induced by DNA damage will release nuclear soluble RPA to localize to chromatin and enable ATR activation. Furthermore, we characterize that HNRNPA2B1 hinders homologous recombination (HR) repair via limiting RPA availability, thus conferring sensitivity to PARP inhibitors. These findings establish HNRNPA2B1 as a critical player in RPA-dependent surveillance networks.


Asunto(s)
Replicación del ADN , Proteína de Replicación A , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Replicación del ADN/genética , Sumoilación , Daño del ADN , Cromatina/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
13.
Drug Metab Dispos ; 51(1): 1-7, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36153008

RESUMEN

Cytochrome P450s (CYPs) display significant inter-individual variation in expression, much of which remains unexplained by known CYP single-nucleotide polymorphisms (SNPs). Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators for several drug-metabolizing CYPs including CYP3A4 However, transcription factors (TFs) that might influence CYP expression through an effect on TSPYL expression are unknown. Therefore, we studied regulators of TSPYL expression in hepatic cell lines and their possible SNP-dependent variation. Specifically, we identified candidate TFs that might influence TSPYL expression using the ENCODE ChIPseq database. Subsequently, the expression of TSPYL1/2/4 as well as that of selected CYP targets for TSPYL regulation were assayed in hepatic cell lines before and after knockdown of TFs that might influence CYP expression through TSPYL-dependent mechanisms. Those results were confirmed by studies of TF binding to TSPYL1/2/4 gene promoter regions. In hepatic cell lines, knockdown of the REST and ZBTB7A TFs resulted in decreased TSPYL1 and TSPYL4 expression and increased CYP3A4 expression, changes reversed by TSPYL1/4 overexpression. Potential binding sites for REST and ZBTB7A on the promoters of TSPYL1 and TSPYL4 were confirmed by chromatin immunoprecipitation. Finally, common SNP variants in upstream binding sites on the TSPYL1/4 promoters were identified and luciferase reporter constructs confirmed SNP-dependent modulation of TSPYL1/4 gene transcription. In summary, we identified REST and ZBTB7A as regulators of the expression of TSPYL genes which themselves can contribute to regulation of CYP expression and-potentially-of drug metabolism. SNP-dependent modulation of TSPYL transcription may contribute to individual variation in both CYP expression and-downstream-drug response phenotypes. SIGNIFICANCE STATEMENT: Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators of cytochrome P450 (CYP) gene expression. Here, we report that variation in TSPYL expression as a result of the effects of genetically regulated TSPYL transcription factors is an additional factor that could result in downstream variation in CYP expression and potentially, as a result, variation in drug biotransformation.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Masculino , Animales , Factores de Transcripción/genética , Proteínas de Unión al ADN/genética , Citocromo P-450 CYP3A/genética , Testículo , Línea Celular Tumoral , Sistema Enzimático del Citocromo P-450/genética
14.
Cancer Res ; 83(3): 456-470, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36469363

RESUMEN

Androgen receptor (AR) is expressed in 80% to 90% of estrogen receptor α-positive (ER+) breast cancers. Accumulated evidence has shown that AR is a tumor suppressor and that its expression is associated with improved prognosis in ER+ breast cancer. However, both a selective AR agonist (RAD140) and an AR inhibitor (enzalutamide, ENZ) have shown a therapeutic effect on ER+ breast cancer, so the potential for clinical application of AR-targeting therapy for ER+ breast cancer is still in dispute. In this study, we evaluated the efficacy of ENZ and RAD140 in vivo and in vitro in AR+/ER+ breast cancer models, characterizing the relationship of AR and ER levels to response to AR-targeting drugs and investigating the alterations of global gene expression and chromatin binding of AR and ERα after ENZ treatment. In the AR-low setting, ENZ directly functioned as an ERα antagonist. Cell growth inhibition by ENZ in breast cancer with low AR expression was independent of AR and instead dependent on ER. In AR-high breast cancer models, AR repressed ERα signaling and ENZ promoted ERα signaling by antagonizing AR. In contrast, RAD140 activated AR signaling and suppressed AR-high tumor growth by deregulating ERα expression and blocking ERα function. Overall, analysis of the dynamic efficacies and outcomes of AR agonist, and antagonist in the presence of different AR and ERα levels reveals regulators of response and supports the clinical investigation of ENZ in selected ER+ tumors with a low AR/ER ratio and AR agonists in tumors with a high AR/ER ratio. SIGNIFICANCE: The ratio of androgen receptor to estrogen receptor in breast cancer dictates the response to AR-targeted therapies, providing guidelines for developing AR-directed treatment strategies for patients with breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Andrógenos/farmacología , Línea Celular Tumoral
15.
Front Pharmacol ; 13: 1047318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518674

RESUMEN

The cytochromes P450 (CYPs) represent a large gene superfamily that plays an important role in the metabolism of both exogenous and endogenous compounds. We have reported that the testis-specific Y-encoded-like proteins (TSPYLs) are novel CYP gene transcriptional regulators. However, little is known of mechanism(s) by which TSPYLs regulate CYP expression or the functional consequences of that regulation. The TSPYL gene family includes six members, TSPYL1 to TSPYL6. However, TSPYL3 is a pseudogene, TSPYL5 is only known to regulates the expression of CYP19A1, and TSPYL6 is expressed exclusively in the testis. Therefore, TSPYL 1, 2 and 4 were included in the present study. To better understand how TSPYL1, 2, and 4 might influence CYP expression, we performed a series of pull-downs and mass spectrometric analyses. Panther pathway analysis of the 2272 pulled down proteins for all 3 TSPYL isoforms showed that the top five pathways were the Wnt signaling pathway, the Integrin signaling pathway, the Gonadotropin releasing hormone receptor pathway, the Angiogenesis pathway and Inflammation mediated by chemokines and cytokines. Specifically, we observed that 177 Wnt signaling pathway proteins were pulled down with the TSPYLs. Subsequent luciferase assays showed that TSPYL1 knockdown had a greater effect on the activation of Wnt signaling than did TSPYL2 or TSPYL4 knockdown. Therefore, in subsequent experiments, we focused our attention on TSPYL1. HepaRG cell qRT-PCR showed that TSPYL1 regulated the expression of CYPs involved in cholesterol-metabolism such as CYP1B1 and CYP7A1. Furthermore, TSPYL1 and ß-catenin regulated CYP1B1 expression in opposite directions and TSPYL1 appeared to regulate CYP1B1 expression by blocking ß-catenin binding to the TCF7L2 transcription factor on the CYP1B1 promoter. In ß-catenin and TSPYL1 double knockdown cells, CYP1B1 expression and the generation of CYP1B1 downstream metabolites such as 20-HETE could be restored. Finally, we observed that TSPYL1 expression was associated with plasma cholesterol levels and BMI during previous clinical studies of obesity. In conclusion, this series of experiments has revealed a novel mechanism for regulation of the expression of cholesterol-metabolizing CYPs, particularly CYP1B1, by TSPYL1 via Wnt/ß-catenin signaling, raising the possibility that TSPYL1 might represent a molecular target for influencing cholesterol homeostasis.

16.
Front Oncol ; 12: 999302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523978

RESUMEN

Poly(ADP-ribose) (PAR) polymerase inhibitors (PARPi) either have been approved or being tested in the clinic for the treatment of a variety of cancers with homologous recombination deficiency (HRD). However, cancer cells can develop resistance to PARPi drugs through various mechanisms, and new biomarkers and combination therapeutic strategies need to be developed to support personalized treatment. In this study, a genome-wide CRISPR screen was performed in a prostate cancer cell line with 3D culture condition which identified novel signals involved in DNA repair pathways. One of these genes, TBL1XR1, regulates sensitivity to PARPi in prostate cancer cells. Mechanistically, we show that TBL1XR1 interacts with and stabilizes SMC3 on chromatin and promotes γH2AX spreading along the chromatin of the cells under DNA replication stress. TBL1XR1-SMC3 double knockdown (knockout) cells have comparable sensitivity to PARPi compared to SMC3 knockdown or TBL1XR1 knockout cells, and more sensitivity than WT cells. Our findings provide new insights into mechanisms underlying response to PARPi or platin compounds in the treatment of malignancies.

17.
Nucleic Acids Res ; 50(20): 11635-11653, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399508

RESUMEN

Understanding the function of non-coding genomic sequence variants represents a challenge for biomedicine. Many diseases are products of gene-by-environment interactions with complex mechanisms. This study addresses these themes by mechanistic characterization of non-coding variants that influence gene expression only after drug or hormone exposure. Using glucocorticoid signaling as a model system, we integrated genomic, transcriptomic, and epigenomic approaches to unravel mechanisms by which variant function could be revealed by hormones or drugs. Specifically, we identified cis-regulatory elements and 3D interactions underlying ligand-dependent associations between variants and gene expression. One-quarter of the glucocorticoid-modulated variants that we identified had already been associated with clinical phenotypes. However, their affected genes were 'unmasked' only after glucocorticoid exposure and often with function relevant to the disease phenotypes. These diseases involved glucocorticoids as risk factors or therapeutic agents and included autoimmunity, metabolic and mood disorders, osteoporosis and cancer. For example, we identified a novel breast cancer risk gene, MAST4, with expression that was repressed by glucocorticoids in cells carrying the risk genotype, repression that correlated with MAST4 expression in breast cancer and treatment outcomes. These observations provide a mechanistic framework for understanding non-coding genetic variant-chemical environment interactions and their role in disease risk and drug response.


Asunto(s)
Glucocorticoides , Secuencias Reguladoras de Ácidos Nucleicos , Glucocorticoides/genética , Glucocorticoides/metabolismo , Factores de Riesgo , Humanos , Farmacogenética , Sitios de Carácter Cuantitativo
18.
Nat Cancer ; 3(9): 1088-1104, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36138131

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.


Asunto(s)
Carcinoma Ductal Pancreático , Proteína Homóloga de MRE11 , Metiltransferasas , Neoplasias Pancreáticas , Adenosina Difosfato Ribosa , Carcinoma Ductal Pancreático/tratamiento farmacológico , ADN , Exonucleasas/genética , Humanos , Proteína Homóloga de MRE11/genética , Metiltransferasas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , ARN , Mutaciones Letales Sintéticas , Neoplasias Pancreáticas
19.
Clin Transl Sci ; 15(11): 2758-2771, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36128656

RESUMEN

Alternative polyadenylation (APA) is a common genetic regulatory mechanism that generates distinct 3' ends for RNA transcripts. Changes in APA have been associated with multiple biological processes and disease phenotypes. However, the role of hormones and their drug analogs in APA remains largely unknown. In this study, we investigated transcriptome-wide the impact of glucocorticoids on APA in 30 human B-lymphoblastoid cell lines. We found that glucocorticoids could regulate APA for a subset of genes, possibly by changing the expression of 142 RNA-binding proteins, some with known APA-regulating properties. Interestingly, genes with glucocorticoid-mediated APA were enriched in viral translation-related pathways, while genes with glucocorticoid-mediated expression were enriched in interferon and interleukin pathways, suggesting that glucocorticoid-mediated APA might result in functional consequences distinct from gene expression. For example, glucocorticoids, a pharmacotherapy for severe COVID-19, were found to change the APA but not the expression of LY6E, an important antiviral inhibitor in coronavirus diseases. Glucocorticoid-mediated APA was also cell-type-specific, suggesting an action of glucocorticoids that may be unique to immune regulation. We also observed evidence for genotype-dependent glucocorticoid-mediated APA (referred to as pharmacogenomic-alterative polyadenylation quantitative trait loci), providing potential functional mechanisms for a series of common genetic variants that had previously been associated with immune disorders, but without a clear mechanism. In summary, this study reports a series of observations regarding the impact of glucocorticoids on APA, raising the possibility that this mechanism might have implications for both disease pathophysiology and drug therapy.


Asunto(s)
COVID-19 , Poliadenilación , Humanos , Poliadenilación/genética , Transcriptoma , Glucocorticoides/farmacología , Proteínas de Unión al ARN
20.
Oncogene ; 41(35): 4119-4129, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35864174

RESUMEN

The HER2 receptor modulates downstream signaling by forming homodimers and heterodimers with other members of the HER family. For patients with HER2-positive breast cancer, Trastuzumab, an anti-HER2 monoclonal antibody as first-line therapy has shown significant survival benefits. However, the development of acquired resistance to Trastuzumab continues to be a significant obstacle. TNF receptor-associated factor 4 (TRAF4) upregulation was discovered to be associated with a worse clinical outcome. Here we identified TRAF4 overexpression as one of the putative mechanisms for HER2-positive breast cancer cells to maintain HER2 signaling during Trastuzumab treatment, while TRAF4 knockdown reduced HER2 stability and improved Trastuzumab sensitivity. Mechanistically, TRAF4 regulates HER2 level through its impact on SMAD specific E3 ubiquitin protein ligase protein 2 (SMURF2). The development of a membrane-associated protein complex containing HER2, TRAF4, and SMURF2 has been observed. SMURF2 bound to the HER2 cytoplasmic domain, and directly ubiquitinated it leading to HER2 degradation, whereas TRAF4 stabilized HER2 by degrading SMURF2 and inhibiting the binding of SMURF2 to HER2. Moreover, downregulation of TRAF4 has decreased the AKT/mTOR signaling. In conclusion, we discovered a new HER2 signaling regulation that involves the TRAF4-SMURF2 complex, a possible mechanism that might contribute to anti-HER2 resistance, making TRAF4 a viable target for treating HER2 + breast cancer.


Asunto(s)
Neoplasias de la Mama , Factor 4 Asociado a Receptor de TNF , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Receptor ErbB-2 , Transducción de Señal , Trastuzumab , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA