Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Biol Macromol ; 270(Pt 1): 132273, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734348

RESUMEN

The basic leucine zipper (bZIP) transcription factors (TFs) function importantly in numerous life processes in plants. However, bZIP members and their biological roles remain unknown in Camelina sativa, a worldwide promising oil crop. Here, 220 CsbZIP proteins were identified in camelina and classified into thirteen groups. Two and 347 pairs of tandem and segmental duplication genes were detected to be underwent purification selection, with segmental duplication as the main driven-force of CsbZIP gene family expansion. Most CsbZIP genes displayed a tissue-specific expression pattern. Particularly, CsbZIP-A12 significantly positively correlated with many FA/oil biosynthesis-related genes, indicating CsbZIP-A12 may regulate lipid biosynthesis. Notably, yeast one-hybrid (Y1H), ß-Glucuronidase (GUS), dual-luciferase (LUC) and EMSA assays evidenced that CsbZIP-A12 located in nucleus interacted with the promoters of CsSAD2-3 and CsFAD3-3 genes responsible for unsaturated fatty acid (UFA) synthesis, thus activating their transcriptions. Overexpression of CsbZIP-A12 led to an increase of total lipid by 3.275 % compared to the control, followed with oleic and α-linolenic acid levels enhanced by 3.4 % and 5.195 %, and up-regulated the expressions of CsSAD2-3, CsFAD3-3 and CsPDAT2-3 in camelina seeds. Furthermore, heterogeneous expression of CsbZIP-A12 significantly up-regulated the expressions of NtSAD2, NtFAD3 and NtPDAT genes in tobacco plants, thereby improving the levels of total lipids and UFAs in both leaves and seeds without negative effects on other agronomic traits. Together, our findings suggest that CsbZIP-A12 upregulates FA/oil biosynthesis by activating CsSAD2-3 and CsFAD3-3 as well as possible other related genes. These data lay a foundation for further functional analyses of CsbZIPs, providing new insights into the TF-based lipid metabolic engineering to increase vegetable oil yield and health-beneficial quality in oilseeds.

2.
Matrix Biol ; 129: 29-43, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518923

RESUMEN

As the backbone of the extracellular matrix (ECM) and the perineuronal nets (PNNs), hyaluronic acid (HA) provides binding sites for proteoglycans and other ECM components. Although the pivotal of HA has been recognized in Alzheimer's disease (AD), few studies have addressed the relationship between AD pathology and HA synthases (HASs). Here, HASs in different regions of AD brains were screened in transcriptomic database and validated in AßPP/PS1 mice. We found that HAS1 was distributed along the axon and nucleus. Its transcripts were reduced in AD patients and AßPP/PS1 mice. Phosphorylated tau (p-tau) mediates AßPP-induced cytosolic-nuclear translocation of HAS1, and negatively regulated the stability, monoubiquitination, and oligomerization of HAS1, thus reduced the synthesis and release of HA. Furthermore, non-ubiquitinated HAS1 mutant lost its enzyme activity, and translocated from the cytosol into the nucleus, forming nuclear speckles (NS). Unlike the splicing-related NS, less than 1 % of the non-ubiquitinated HAS1 co-localized with SRRM2, proving the regulatory role of HAS1 in gene transcription, indirectly. Thus, differentially expressed genes (DEGs) related to both non-ubiquitinated HAS1 mutant and AD were screened using transcriptomic datasets. Thirty-nine DEGs were identified, with 64.1 % (25/39) showing consistent results in both datasets. Together, we unearthed an important function of the AßPP-p-tau-HAS1 axis in microenvironment remodeling and gene transcription during AD progression, involving the ubiquitin-proteasome, lysosome, and NS systems.


Asunto(s)
Enfermedad de Alzheimer , Núcleo Celular , Hialuronano Sintasas , Proteínas tau , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Ratones , Hialuronano Sintasas/metabolismo , Hialuronano Sintasas/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Transcripción Genética , Fosforilación , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ratones Transgénicos , Ubiquitinación
3.
Adv Sci (Weinh) ; 11(12): e2306389, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225717

RESUMEN

Vanadium (V) pollution potentially threatens human health. Here, it is found that nsp1 and nsp2, Rhizobium symbiosis defective mutants of Medicago truncatula, are sensitive to V. Concentrations of phosphorus (P), iron (Fe), and sulfur (S) with V are negatively correlated in the shoots of wild-type R108, but not in mutant nsp1 and nsp2 shoots. Mutations in the P transporter PHT1, PHO1, and VPT families, Fe transporter IRT1, and S transporter SULTR1/3/4 family confer varying degrees of V tolerance on plants. Among these gene families, MtPT1, MtZIP6, MtZIP9, and MtSULTR1; 1 in R108 roots are significantly inhibited by V stress, while MtPHO1; 2, MtVPT2, and MtVPT3 are significantly induced. Overexpression of Arabidopsis thaliana VPT1 or M. truncatula MtVPT3 increases plant V tolerance. However, the response of these genes to V is weakened in nsp1 or nsp2 and influenced by soil microorganisms. Mutations in NSPs reduce rhizobacterial diversity under V stress and simplify the V-responsive operational taxonomic unit modules in co-occurrence networks. Furthermore, R108 recruits more beneficial rhizobacteria related to V, P, Fe, and S than does nsp1 or nsp2. Thus, NSPs can modulate the accumulation and tolerance of legumes to V through P, Fe, and S transporters, ion homeostasis, and rhizobacterial community responses.


Asunto(s)
Medicago truncatula , Vanadio , Humanos , Vanadio/metabolismo , Mutación , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Transducción de Señal
4.
Sci China Life Sci ; 66(11): 2646-2662, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37286859

RESUMEN

Iron (Fe) is an essential micronutrient for all organisms. Fe availability in the soil is usually much lower than that required for plant growth, and Fe deficiencies seriously restrict crop growth and yield. Calcium (Ca2+) is a second messenger in all eukaryotes; however, it remains largely unknown how Ca2+ regulates Fe deficiency. In this study, mutations in CPK21 and CPK23, which are two highly homologous calcium-dependent protein kinases, conferredimpaired growth and rootdevelopment under Fe-deficient conditions, whereas constitutively active CPK21 and CPK23 enhanced plant tolerance to Fe-deficient conditions. Furthermore, we found that CPK21 and CPK23 interacted with and phosphorylated the Fe transporter IRON-REGULATED TRANSPORTER1 (IRT1) at the Ser149 residue. Biochemical analyses and complementation of Fe transport in yeast and plants indicated that IRT1 Ser149 is critical for IRT1 transport activity. Taken together, these findings suggest that the CPK21/23-IRT1 signaling pathway is critical for Fe homeostasis in plants and provides targets for improving Fe-deficient environments and breeding crops resistant to Fe-deficient conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Catión , Deficiencias de Hierro , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Fitomejoramiento , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Quinasas/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo
5.
Sci Adv ; 9(21): eade0293, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235655

RESUMEN

Innovative therapeutic strategies are urgently needed for Alzheimer's disease (AD) due to the increasing size of the aging population and the lack of effective drug treatment. Here, we report the therapeutic effects of extracellular vesicles (EVs) secreted by microglia, including macrosomes and small EVs, on AD-associated pathology. Macrosomes strongly inhibited ß-amyloid (Aß) aggregation and rescued cells from Aß misfolding-induced cytotoxicity. Furthermore, macrosome administration reduced Aß plaques and ameliorated cognitive impairment in mice with AD. In contrast, small EVs slightly promoted Aß aggregation and did not improve AD pathology. Proteomic analysis of small EVs and macrosomes revealed that macrosomes harbor several important neuroprotective proteins that inhibit Aß misfolding. In particular, the small integral membrane protein 10-like protein 2B in macrosomes has been shown to inhibit Aß aggregation. Our observations provide an alternative therapeutic strategy for the treatment of AD over conventional ineffective drug treatments.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Proteómica , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Modelos Animales de Enfermedad
6.
Int J Biol Macromol ; 237: 124177, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36972823

RESUMEN

Persistent bacterial infection caused by biofilms is one of the most serious problems that threatened human health. The development of antibacterial agents remains a challenge to penetrate biofilm and effectively treat the underlying bacterial infection. In the current study, chitosan-based nanogels were developed for encapsulating the Tanshinone IIA (TA) to enhance the antibacterial and anti-biofilm efficacy against Streptococcus mutans (S. mutans). The as-prepared nanogels (TA@CS) displayed excellent encapsulation efficiency (91.41 ± 0.11 %), uniform particle sizes (393.97 ± 13.92 nm), and enhanced positive potential (42.27 ± 1.25 mV). After being coated with CS, the stability of TA under light and other harsh environments was greatly improved. In addition, TA@CS displayed pH responsiveness, allowing it to selectively release more TA in acidic conditions. Furthermore, the positively charged TA@CS were equipped to target negatively charged biofilm surfaces and efficiently penetrate through biofilm barriers, making it promising for remarkable anti-biofilm activity. More importantly, when TA was encapsulated into CS nanogels, the antibacterial activity of TA was enhanced at least 4-fold. Meanwhile, TA@CS inhibited 72 % of biofilm formation at 500 µg/mL. The results demonstrated that the nanogels constituted CS and TA had antibacterial/anti-biofilm properties with synergistic enhanced effects, which will benefit pharmaceutical, food, and other fields.


Asunto(s)
Quitosano , Humanos , Quitosano/química , Nanogeles , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno , Biopelículas
7.
Plant Physiol ; 192(2): 910-926, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36943277

RESUMEN

Arsenate [As(V)] is a metalloid with heavy metal properties and is widespread in many environments. Dietary intake of food derived from arsenate-contaminated plants constitutes a major fraction of the potentially health-threatening human exposure to arsenic. However, the mechanisms underlying how plants respond to arsenate stress and regulate the function of relevant transporters are poorly understood. Here, we observed that As(V) stress induces a significant Ca2+ signal in Arabidopsis (Arabidopsis thaliana) roots. We then identified a calcium-dependent protein kinase, CALCIUM-DEPENDENT PROTEIN KINASE 23 (CPK23), that interacts with the plasma membrane As(V)/Pi transporter PHOSPHATE TRANSPORTER 1;1 (PHT1;1) in vitro and in vivo. cpk23 mutants displayed a sensitive phenotype under As(V) stress, while transgenic Arabidopsis plants with constitutively active CPK23 showed a tolerant phenotype. Furthermore, CPK23 phosphorylated the C-terminal domain of PHT1;1, primarily at Ser514 and Ser520. Multiple experiments on PHT1;1 variants demonstrated that PHT1;1S514 phosphorylation is essential for PHT1;1 function and localization under As(V) stress. In summary, we revealed that plasma-membrane-associated calcium signaling regulates As(V) tolerance. These results provide insight for crop bioengineering to specifically address arsenate pollution in soils.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Arseniatos/toxicidad , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Membrana Celular/metabolismo
8.
Plant J ; 114(6): 1443-1457, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36948884

RESUMEN

Nitrogen (N) is one of the most essential mineral elements for plants. Brassinosteroids (BRs) play key roles in plant growth and development. Emerging evidence indicates that BRs participate in the responses to nitrate deficiency. However, the precise molecular mechanism underlying the BR signaling pathway in regulating nitrate deficiency remains largely unknown. The transcription factor BES1 regulates the expression of many genes in response to BRs. Root length, nitrate uptake and N concentration of bes1-D mutants were higher than those of wild-type under nitrate deficiency. BES1 levels strongly increased under low nitrate conditions, especially in the non-phosphorylated (active) form. Furthermore, BES1 directly bound to the promoters of NRT2.1 and NRT2.2 to promote their expression under nitrate deficiency. Taken together, BES1 is a key mediator that links BR signaling under nitrate deficiency by modulating high affinity nitrate transporters in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al ADN , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Nitratos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Transporte de Anión/metabolismo
9.
Plant Physiol ; 192(2): 1498-1516, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36823690

RESUMEN

Aluminum (Al) toxicity represents a primary constraint for crop production in acidic soils. Rice (Oryza sativa) is a highly Al-resistant species; however, the molecular mechanisms underlying its high Al resistance are still not fully understood. Here, we identified SAL1 (SENSITIVE TO ALUMINUM 1), which encodes a plasma membrane (PM)-localized PP2C.D phosphatase, as a crucial regulator of Al resistance using a forward genetic screen. SAL1 was found to interact with and inhibit the activity of PM H+-ATPases, and mutation of SAL1 increased PM H+-ATPase activity and Al uptake, causing hypersensitivity to internal Al toxicity. Furthermore, knockout of NRAT1 (NRAMP ALUMINUM TRANSPORTER 1) encoding an Al uptake transporter in a sal1 background rescued the Al-sensitive phenotype of sal1, revealing that coordination of Al accumulation in the cell, wall and symplasm is critical for Al resistance in rice. By contrast, we found that mutations of PP2C.D phosphatase-encoding genes in Arabidopsis (Arabidopsis thaliana) enhanced Al resistance, which was attributed to increased malate secretion. Our results reveal the importance of PP2C.D phosphatases in Al resistance and the different strategies used by rice and Arabidopsis to defend against Al toxicity.


Asunto(s)
Arabidopsis , Oryza , Monoéster Fosfórico Hidrolasas/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Raíces de Plantas/metabolismo
10.
Exp Neurol ; 362: 114346, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36750170

RESUMEN

Recent evidence suggests that human islet amyloid polypeptide (h-IAPP) accumulates in the brains of Alzheimer's disease (AD) patients and may interact with Aß or microtubule associated protein tau to associate with the neurodegenerative process. Increasing evidence indicates a potential protective effect of h-IAPP against Aß-induced neurotoxicity in AD mouse models. However, a direct therapeutic effect of h-IAPP supplementation on tauopathy has not been established. Here, we found that long-term h-IAPP treatment attenuated tau hyperphosphorylation levels and induced neuroinflammation and oxidative damage, prevented synaptic loss and neuronal degeneration in the hippocampus, and alleviated behavioral deficits in P301S transgenic mice (a mouse model of tauopathy). Restoration of insulin sensitization, glucose/energy metabolism, and activated BDNF signaling also contributed to the underlying mechanisms. These findings suggest that seemly h-IAPP has promise for the treatment of neurodegenerative disorders with tauopathy, such as AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Humanos , Animales , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Hipocampo/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo
11.
Int J Biol Macromol ; 232: 123420, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36708890

RESUMEN

Natural isoflavonoids have attracted much attention in the treatment of oral bacterial infections and other diseases due to their excellent antibacterial activity and safety. However, their poor water solubility, instability and low bioavailability seriously limited the practical application. In this study, licoricidin-loaded chitosan nanoparticles (LC-CSNPs) were synthesized by self-assembly for improving the dispersion of licoricidin (LC) and strengthening antibacterial and anti-biofilm performance. Compared to free LC, the minimum inhibitory concentration of LC-CSNPs against Streptococcus mutans decreased >2-fold to 26 µg/mL, and LC-CSNPs could ablate 70 % biofilms at this concentration. The enhanced antibacterial activity was mainly attributed to the spontaneous surface adsorption of LC-CSNPs on cell membranes through electrostatic interactions. More valuably, LC-CSNPs had no inhibitory effect on the growth of probiotic. Mechanism study indicated that LC-CSNPs altered the transmembrane potential to cause bacterial cells in a hyperpolarized state, generating ROS to cause cells damage and eventually apoptosis. This work demonstrated that the chitosan-based nanoparticles have great potential in enhancing the dispersibility and antibacterial activity of insoluble isoflavonoids, offering a promising therapeutic strategy for oral infections.


Asunto(s)
Quitosano , Nanopartículas , Quitosano/metabolismo , Antibacterianos/farmacología , Solubilidad
12.
BMC Genomics ; 23(1): 812, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36476342

RESUMEN

BACKGROUND: Dof transcription factors (TFs) containing C2-C2 zinc finger domains are plant-specific regulatory proteins, playing crucial roles in a variety of biological processes. However, little is known about Dof in Camelina sativa, an important oil crop worldwide, with high stress tolerance. In this study, a genome-wide characterization of Dof proteins is performed to examine their basic structural characteristics, phylogenetics, expression patterns, and functions to identify the regulatory mechanism underlying lipid/oil accumulation and the candidate Dofs mediating stress resistance regulation in C. sativa. RESULTS: Total of 103 CsDof genes unevenly distributed on 20 chromosomes were identified from the C. sativa genome, and they were classified into four groups (A, B, C and D) based on the classification of Arabidopsis Dof gene family. All of the CsDof proteins contained the highly-conserved typic CX2C-X21-CX2C structure. Segmental duplication and purifying selection were detected for CsDof genes. 61 CsDof genes were expressed in multiple tissues, and 20 of them showed tissue-specific expression patterns, suggesting that CsDof genes functioned differentially in different tissues of C. sativa. Remarkably, a set of CsDof members were detected to be possible involved in regulation of oil/lipid biosynthesis in C. sativa. Six CsDof genes exhibited significant expression changes in seedlings under salt stress treatment. CONCLUSIONS: The present data reveals that segmental duplication is the key force responsible for the expansion of CsDof gene family, and a strong purifying pressure plays a crucial role in CsDofs' evolution. Several CsDof TFs may mediate lipid metabolism and stress responses in C. sativa. Several CsDof TFs may mediate lipid metabolism and stress responses in C. sativa. Collectively, our findings provide a foundation for deep understanding the roles of CsDofs and genetic improvements of oil yield and salt stress tolerance in this species and the related crops.


Asunto(s)
Lípidos , Factores de Transcripción , Factores de Transcripción/genética
13.
Eur J Clin Microbiol Infect Dis ; 41(10): 1215-1225, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36040531

RESUMEN

Invasive Salmonella infections result in a significant burden of disease including morbidity, mortality, and financial cost in many countries. Besides typhoid fever, the clinical impact of non-typhoid Salmonella infections is increasingly recognized with the improvement of laboratory detection capacity and techniques. A retrospective multicenter study was conducted to analyze the clinical profiles and antimicrobial resistance patterns of invasive Salmonella infections in hospitalized children in China during 2016-2018. A total of 130 children with invasive Salmonella infections were included with the median age of 12 months (range: 1-144 months). Seventy-nine percent of cases occurred between May and October. Pneumonia was the most common comorbidity in 33 (25.4%) patients. Meningitis and septic arthritis caused by nontyphoidal Salmonella (NTS) infections occurred in 12 (9.2%) patients and 5 (3.8%) patients. Patients < 12 months (OR: 16.04) and with septic shock (OR: 23.4), vomit (OR: 13.33), convulsion (OR: 15.86), C-reactive protein (CRP) ≥ 40 g/L (OR: 5.56), and a higher level of procalcitonin (PCT) (OR: 1.05) on admission were statistically associated to an increased risk of developing meningitis. Compared to 114 patients with NTS infections, 16 patients with typhoid fever presented with higher levels of CRP and PCT (P < 0.05). The rates of resistance to ampicillin, sulfamethoxazole/trimethoprim, ciprofloxacin, and ceftriaxone among Salmonella Typhi and NTS isolates were 50% vs 57.3%, 9.1% vs 24.8%, 0% vs 11.2%, and 0% vs 9.9%, respectively. NTS has been the major cause of invasive Salmonella infections in Chinese children and can result in severe diseases. Antimicrobial resistance among NTS was more common.


Asunto(s)
Infecciones por Salmonella , Fiebre Tifoidea , Ampicilina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteína C-Reactiva , Ceftriaxona , Niño , Preescolar , China/epidemiología , Ciprofloxacina , Farmacorresistencia Bacteriana , Humanos , Lactante , Pruebas de Sensibilidad Microbiana , Polipéptido alfa Relacionado con Calcitonina , Salmonella , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Combinación Trimetoprim y Sulfametoxazol , Fiebre Tifoidea/tratamiento farmacológico
14.
Bioorg Chem ; 128: 106100, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35988518

RESUMEN

Researchers continue to explore drug targets to treat the characteristic pathologies of Alzheimer's disease (AD). Some drugs relieve the pathological processes of AD to some extent, but the failed clinical trials indicate that multifunctional agents seem more likely to achieve the therapy goals for this neurodegenerative disease. Herein, a novel compound named melatonin-trientine (TM) has been covalently synthesized with the natural antioxidant compounds melatonin and the metal ion chelator trientine. After toxicological and pharmacokinetic verification, we elucidated the effects of intraperitoneal administration of TM on AD-like pathology in 6-month-old mice that express both the ß-amyloid (Aß) precursor protein and presenilin-1 (APP/PS1). We found that TM significantly decreased Aß deposition and neuronal degeneration in the brains of the APP/PS1 double transgenic mice. This result may be due to the upregulation of iron regulatory protein-2 (IRP2), insulin degrading enzyme (IDE), and low density lipoprotein receptor related protein 1 (LRP1), which leads to decreases in APP and Aß levels. Additionally, TM may promote APP non-amyloidogenic processing by activating the melatonin receptor-2 (MT2)-dependent signaling pathways, but not MT1. In addition, TM plays an important role in blocking γ-secretase, tau hyperphosphorylation, neuroinflammation, oxidative stress, and metal ion dyshomeostasis. Our results suggest that TM may effectively maximize the therapeutic efficacy of targeting multiple mechanisms associated with AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Melatonina , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Quelantes/farmacología , Modelos Animales de Enfermedad , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Transgénicos , Trientina/uso terapéutico
15.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887392

RESUMEN

Parkinson's disease (PD) is characterized by the presence of Lewy bodies caused by α-synuclein. The imbalance of zinc homeostasis is a major cause of PD, promoting α-synuclein accumulation. ATP13A2, a transporter found in acidic vesicles, plays an important role in Zn2+ homeostasis and is highly expressed in Lewy bodies in PD-surviving neurons. ATP13A2 is involved in the transport of zinc ions in lysosomes and exosomes and inhibits the aggregation of α-synuclein. However, the potential mechanism underlying the regulation of zinc homeostasis and α-synuclein accumulation by ATP13A2 remains unexplored. We used α-synuclein-GFP transgenic mice and HEK293 α-synuclein-DsRed cell line as models. The spatial exploration behavior of mice was significantly reduced, and phosphorylation levels of α-synuclein increased upon high Zn2+ treatment. High Zn2+ also inhibited the autophagy pathway by reducing LAMP2a levels and changing the expression of LC3 and P62, by reducing mitochondrial membrane potential and increasing the expression of cytochrom C, and by activating the ERK/P38 apoptosis signaling pathway, ultimately leading to increased caspase 3 levels. These protein changes were reversed after ATP13A2 overexpression, whereas ATP13A2 knockout exacerbated α-synuclein phosphorylation levels. These results suggest that ATP13A2 may have a protective effect on Zn2+-induced abnormal aggregation of α-synuclein, lysosomal dysfunction, and apoptosis.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Células HEK293 , Humanos , Ratones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Zinc/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
Neurobiol Dis ; 172: 105824, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35878744

RESUMEN

Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Humanos , Iones/uso terapéutico , Zinc
17.
ACS Chem Neurosci ; 13(14): 2154-2163, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35818957

RESUMEN

Misfolding and accumulation of amyloid-ß (Aß) to form senile plaques are the main neuropathological signatures of Alzheimer's disease (AD). Decreasing Aß production, inhibiting Aß aggregation, and clearing Aß plaques are thus considered an important strategy for AD treatment. However, numerous drugs cannot enter the AD clinical trials due to unsatisfactory biocompatibility, poor blood-brain barrier penetration, little biomarker impact, and/or low therapeutic indicators. Here, a pair of chiral aspartic acid-modified 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (l- and d-Asp-DPPE) are prepared to build stabilized chiral liposomes. We find that both l- and d-liposomes are able to rescue Aß aggregation-induced apoptosis, oxidative stress, and calcium homeostasis, in which the effect of d-liposomes is more obvious than that of l-ones. Furthermore, in AD model mice (APPswe/PS1d9 double-transgenic mice), chiral liposomes not only show biosafety but also strongly improve cognitive deficits and reduce Aß deposition in the brain. Our results suggest that chiral liposomes, particularly, d-liposomes, could be a potential therapeutic approach for AD treatment. This study opens new horizons by showing that liposomes will be used for drug development in addition to delivery and targeting functions.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Liposomas , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Fosfolípidos , Placa Amiloide/patología , Presenilina-1/genética , Presenilina-1/metabolismo
18.
Front Plant Sci ; 13: 854103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693158

RESUMEN

Diacylglycerol acyltransferases (DGAT) function as the key rate-limiting enzymes in de novo biosynthesis of triacylglycerol (TAG) by transferring an acyl group from acyl-CoA to sn-3 of diacylglycerol (DAG) to form TAG. Here, two members of the type 3 DGAT gene family, GmDGAT3-1 and GmDGAT3-2, were identified from the soybean (Glycine max) genome. Both of them were predicted to encode soluble cytosolic proteins containing the typical thioredoxin-like ferredoxin domain. Quantitative PCR analysis revealed that GmDGAT3-2 expression was much higher than GmDGAT3-1's in various soybean tissues such as leaves, flowers, and seeds. Functional complementation assay using TAG-deficient yeast (Saccharomyces cerevisiae) mutant H1246 demonstrated that GmDGAT3-2 fully restored TAG biosynthesis in the yeast and preferentially incorporated monounsaturated fatty acids (MUFAs), especially oleic acid (C18:1) into TAGs. This substrate specificity was further verified by fatty-acid feeding assays and in vitro enzyme activity characterization. Notably, transgenic tobacco (Nicotiana benthamiana) data showed that heterogeneous expression of GmDGAT3-2 resulted in a significant increase in seed oil and C18:1 levels but little change in contents of protein and starch compared to the EV-transformed tobacco plants. Taken together, GmDGAT3-2 displayed a strong enzymatic activity to catalyze TAG assembly with high substrate specificity for MUFAs, particularly C18:1, playing an important role in the cytosolic pathway of TAG synthesis in soybean. The present findings provide a scientific reference for improving oil yield and FA composition in soybean through gene modification, further expanding our knowledge of TAG biosynthesis and its regulatory mechanism in oilseeds.

19.
Plant Sci ; 319: 111243, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487651

RESUMEN

Cyperus esculentus is considered one of the most promising oil crops due to its oil-rich tuber, wide adaptability and large biomass production. Preferable triacylglycerol (TAG) composition, especially high oleic acid content, makes tuber oil suitable for human consumption and biodiesel production. However, the mechanism underlying oleic acid enrichment in the tuber remains unknown. Plastidial stearoyl-ACP desaturase (SAD) catalyses the formation of monounsaturated fatty acids (MUFAs), which may function crucially for high accumulation of oleic acid in C. esculentus tubers. In this study, two full-length cDNAs encoding SAD were isolated from the developing tubers of C. esculentus, namely, CeSAD1 and CeSAD2, with ORFs of 1194 bp and 1161 bp, respectively. Quantitative RT-PCR analysis showed that CeSAD genes were highly expressed in tubers. The expression pattern during tuber formation was also significantly correlated with fatty acid and oil accumulation dynamics. Overexpression of each CeSAD gene could restore the normal growth of the defective yeast BY4389, indicating that both CeSADs had fatty acid desaturase activity to catalyse MUFA biosynthesis. A tobacco genetic transformation assay demonstrated that both CeSAD enzymes had high enzyme activity. Exogenous addition of exogenous fatty acids to feed yeast revealed that CeSAD1 has a more substantial substrate preference ratio for C18:0 than CeSAD2 did. Moreover, the overexpression of CeSAD1 significantly increased host tolerance against low-temperature stress. Our data add new insights into the deep elucidation of oleic acid-enriched oils in Cyperus esculentus tubers, showing CeSAD, especially CeSAD1, as the target gene in genetic modification to increase oil and oleic yields in oil crops as well as stress tolerance.


Asunto(s)
Cyperus , Ácido Graso Desaturasas , Cyperus/genética , Cyperus/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Aceites/metabolismo , Ácido Oléico/metabolismo , Levaduras/metabolismo
20.
Theranostics ; 12(5): 2041-2062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265198

RESUMEN

Alzheimer's disease (AD) is an incurable and fatal progressive neurodegenerative disorder associated with memory and cognition impairment. AD is one of the top medical care concerns across the world with a projected economic burden of $2 trillion by 2030. To date, however, there remains no effective disease-modifying therapy available. It is more important than ever to reveal novel therapeutic approaches. Peptide-based biotherapeutics has been a great potential strategy attributed to their distinct and superior biochemical characteristics, such as reproducible chemical synthesis and modification, rapid cell and tissue permeability, and fast blood clearance. Phage display, one of today's most powerful platforms, allows selection and identification of suitable peptide drug candidates with high affinities and specificity toward target, demonstrating the potential to overcome challenges and limitations in AD diagnosis/treatment. We aim to provide the first comprehensive review to summarize the status in this research direction. The biological overview of phage display is described, including basic biology of the phage vectors and construction principle of phage library, biopanning procedure, mirror image phage display, and various binding affinity evaluation approaches. Further, the applications of phage display in AD therapy, targeted drug delivery, and early detection are presented. Finally, we discuss the current challenges and offer a future outlook for further advancing the potential application of phage display on AD and other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Bacteriófagos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Técnicas de Visualización de Superficie Celular/métodos , Humanos , Biblioteca de Péptidos , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...