Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 172057, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38552972

RESUMEN

Wastewater-based epidemiology (WBE) is proposed as a cost-effective approach to objectively monitor the antidepressant use but it requires more accurate correction factors (CF) than what had been used in previous studies. Amitriptyline is a popular prescription medicine for treating depression and nerve pain, which could be prone to misuse and need monitoring. The CF of amitriptyline employed in previous WBE studies varied from 10 to 100, leading to substantial disparities between WBE estimates and expected mass of antidepressants in wastewater. Hence, this study aimed to take amitriptyline as a case study and refine the CF by correlating mass loads measured in wastewater from 12.2 million inhabitants collected during the 2016 Census with corresponding annual sales data. The triangulation of WBE data and sales data resulted in a newly-derived CF of 7, which is significantly different from the CF values used in previous studies. The newly derived CF was applied to a secondary, multi-year (2017 to 2020) WBE dataset for validation against sales data in the same period, demonstrating the estimated amitriptyline use (380 ± 320 mg/day/1000 inhabitants) is consistent with sales data (450 ± 190 mg/day/1000 inhabitants). When we applied the new CF to previous studies, the wastewater consumption loads matched better to prescription data than previous WBE estimations. The refined CF of amitriptyline can be used in future WBE studies to improve the accuracy of the consumption estimates.


Asunto(s)
Amitriptilina , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Antidepresivos/uso terapéutico
2.
Water Res ; 249: 120978, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071905

RESUMEN

Monitoring urinary markers of dietary, disease, and stress by wastewater-based epidemiology (WBE) is a promising tool to better understand population health and wellbeing. However, common urinary biomarkers are subject to degradation in sewer systems and their fates have to be assessed before they can be used in WBE. This study investigated the stability of 31 urinary biomarkers (12 food biomarkers, 8 vitamins, 9 oxidative stress biomarkers, and 1 histamine biomarker) in a laboratory sewer sediment reactor and evaluated their suitability for WBE, considering their detectability in real wastewater and in-sewer stability. These biomarkers showed various transformation patterns, among which 16 compounds had half-lives <2 h while other 15 compounds presented moderate to high stability (2 to >500 h). Thirteen biomarkers showed potential for WBE because of their consistently measurable concentrations in untreated wastewater and sufficient in-sewer stability. Eighteen biomarkers were unsuitable due to their rapid in-sewer degradation and/or undetectable concentration levels in untreated wastewater using previous methods. Transformation rates of these biomarkers showed generally weak relationships with molecular properties but relatively higher correlations with biological activities in sewers. Overall, this study determined in-sewer stability of 31 health-related biomarkers through laboratory experiments, providing new findings to WBE for population health assessment.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Humanos , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis , Biomarcadores , Alimentos , Aguas del Alcantarillado
3.
Environ Sci Technol ; 57(30): 11241-11250, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37461144

RESUMEN

Previous studies have reported that zerovalent iron (ZVI) can reduce several aliphatic groups of disinfection byproducts (DBPs) (e.g., haloacetic acids and haloacetamides) effectively, and the removal efficiency can be significantly improved by metallic copper. Information regarding ZVI/Cu combined degradation of different types of halogenated DBPs can help understand the fate of overall DBPs in drinking water distribution and storage systems consisting of unlined cast iron/copper pipes and related potential control strategies. In this study, we found that, besides aliphatic DBPs, many groups of new emerging aromatic DBPs formed in chlorinated and chloraminated drinking water can be effectively degraded by ZVI/Cu; meanwhile, total organic halogen and total ion intensity were reduced significantly after treatment. Moreover, a robust quantitative structure-activity relationship model was developed and validated based on the ZVI/Cu combined degradation rate constants of 14 typical aromatic DBPs; it can predict the degradation rate constants of other aromatic DBPs for screening and comparative purposes, and the optimized descriptors indicate that DBPs possessing a lower value of the lowest unoccupied molecular orbital energy and a higher value of dipole moment tend to present higher degradation rate constants. In addition, toxicity data of 47 DBPs (belonging to 18 groups) were predicted by two previously established toxicity models, demonstrating that, although most DBPs exhibit higher toxicity than their dehalogenated products, some DBPs show lower toxicity than their lowly halogenated analogs.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Cobre , Hierro , Relación Estructura-Actividad Cuantitativa , Halogenación , Contaminantes Químicos del Agua/análisis
4.
Water Res ; 233: 119796, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863281

RESUMEN

Carbapenems are last-resort antibiotics used to treat bacterial infections unsuccessfully treated by most common categories of antibiotics in humans. Most of their dosage is secreted unchanged as waste, thereby making its way into the urban water system. There are two major knowledge gaps addressed in this study to gain a better understanding of the effects of their residual concentrations on the environment and environmental microbiome: development of a UHPLC-MS/MS method of detection and quantification from raw domestic wastewater via direct injection and study of their stability in sewer environment during the transportation from domestic sewers to wastewater treatment plants. The UHPLC-MS/MS method was developed for four carbapenems: meropenem, doripenem, biapenem and ertapenem, and validation was performed in the range of 0.5-10 µg/L for all analytes, with limit of detection (LOD) and limit of quantification (LOQ) values ranging from 0.2-0.5 µg/L and 0.8-1.6 µg/L respectively. Laboratory scale rising main (RM) and gravity sewer (GS) bioreactors were employed to culture mature biofilms with real wastewater as the feed. Batch tests were conducted in RM and GS sewer bioreactors fed with carbapenem-spiked wastewater to evaluate the stability of carbapenems and compared against those in a control reactor (CTL) without sewer biofilms, over a duration of 12 h. Significantly higher degradation was observed for all carbapenems in RM and GS reactors (60 - 80%) as opposed to CTL reactor (5 - 15%), which indicates that sewer biofilms play a significant role in the degradation. First order kinetics model was applied to the concentration data along with Friedman's test and Dunn's multiple comparisons analysis to establish degradation patterns and differences in the degradation observed in sewer reactors. As per Friedman's test, there was a statistically significant difference in the degradation of carbapenems observed depending on the reactor type (p = 0.0017 - 0.0289). The results from Dunn's test indicate that the degradation in the CTL reactor was statistically different from that observed in either RM (p = 0.0033 - 0.1088) or GS (p = 0.0162 - 0.1088), with the latter two showing insignificant difference in the degradation rates observed (p = 0.2850 - 0.5930). The findings contribute to the understanding about the fate of carbapenems in urban wastewater and the potential application of wastewater-based epidemiology.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Humanos , Carbapenémicos , Espectrometría de Masas en Tándem , Reactores Biológicos , Biopelículas , Antibacterianos
5.
Water Res ; 225: 119182, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36215836

RESUMEN

Consumption of amphetamine and methamphetamine, two common illicit drugs, has been monitored by wastewater-based epidemiology (WBE) in many countries over the past decade. There is potential for the estimated amount of amphetamine used to be skewed at locations where methamphetamine is also consumed, because amphetamine is also excreted to wastewater following methamphetamine consumption. The present study aims to review the available data in the literature to identify an average ratio of amphetamine/methamphetamine (AMP/METH) that is excreted to wastewater after methamphetamine consumption. This ratio could then be used to refine the estimation of amphetamine consumption in catchments where there is both amphetamine and methamphetamine use. Using data from more than 6000 wastewater samples from Australia where methamphetamine is the dominant illicit amphetamine-type substance on the market, we were able to subtract the contribution of legal sources of amphetamine contribution and obtain the median AMP/METH ratio in wastewater of 0.09. Using this value, the amphetamine derived from methamphetamine consumption can be calculated and subtracted from the total amphetamine mass loads in wastewater samples. Without considering the contribution of amphetamine from methamphetamine use, selected European catchments with comparable consumption of amphetamine and methamphetamine showed up to 83% overestimation of amphetamine use. For catchments with AMP/METH ratio greater than 1.00, the impact of amphetamine from methamphetamine would be negligible; for catchments with AMP/METH ratio in the range of 0.04-0.19, it will be difficult to accurately estimate amphetamine consumption.


Asunto(s)
Drogas Ilícitas , Metanfetamina , Contaminantes Químicos del Agua , Anfetamina , Detección de Abuso de Sustancias , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 827: 154171, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35231503

RESUMEN

Consumption of antibiotics leads to the dissemination of antimicrobial resistance worldwide. Better knowledge of temporal and spatial consumption of antibiotics helps public health authorities to control their usage and combat antimicrobial resistance. However, measuring antibiotic consumption with population surveys, sales data, and production statistics remains challenging due to the complexity of prescription preference, patient compliance, and direct disposal of unused drugs. With the approach of wastewater-based epidemiology (WBE), this study aims to evaluate the consumption of eight commonly-used antibiotics between developed urban and developing sub-urban catchments in China and to characterise the ratios of parent drugs to metabolites in studying the consumption. Seven parent antibiotics were detected in all the wastewater samples (n = 56), whereas some metabolites were detected sporadically. The ratios of parent chemicals to metabolites varied among locations and were often higher than the ratios in pharmacokinetic studies. Estimated consumption of antibiotics ranged from 3.2 ± 2.0 mg/day/1000 inhabitants for trimethoprim to 28,400 ± 7800 mg/day/1000 inhabitants for roxithromycin in the studied catchments. Higher consumption of sulfapyridine, sulfadiazine and roxithromycin was observed in urban than suburban catchments, while consumption of sulfamethoxazole, norfloxacin, and trimethoprim was higher in suburban than in urban catchments. Using the literature data, we found more than 95% reduction of antibiotic use in an urban catchment. Our study revealed the geographical pattern in antibiotic use across different urban and suburban catchments via WBE, and the potential of monitoring parent-to-metabolite ratios for WBE in estimating antibiotic use. These results provide a basis for health authorities to plan different drug-specific control policies between urban and suburban catchments, and for future WBE studies to be aware of other sources, such as animal husbandry and disposals of unused drugs, that can influence the estimated consumption.


Asunto(s)
Roxitromicina , Contaminantes Químicos del Agua , Animales , Antibacterianos , Trimetoprim , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis
7.
Water Res ; 216: 118321, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339048

RESUMEN

Wastewater-based epidemiology (WBE) is amply used for mining information about public health such as the estimation of consumption/intake of certain substances. Yet, proper biomarker selection is critical to obtain reliable data. This study measured a broad range of pharmaceuticals and metabolites in a wastewater treatment plant in Beijing, China, and evaluated their suitability as consumption estimation biomarkers. Wastewater sampling was conducted during a normal week and two holiday weeks to assess the impact of the holiday on population normalized daily mass loads (PNDLs). One hundred and forty-nine out of 168 pharmaceuticals were detected, with 94 analytes being quantified in all sampling events. Moreover, digestive drug cimetidine (

Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Biomarcadores , Estudios de Factibilidad , Preparaciones Farmacéuticas , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis
8.
J Hazard Mater ; 417: 125999, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34229374

RESUMEN

Wastewater-based epidemiology (WBE) has been used extensively around the globe to provide information on illicit drug consumption. In China, most WBE studies to date only include a limited number of samples per catchment, making it difficult to derive any temporal consumption patterns. This study addresses this knowledge gap by identifying the temporal consumption trends of nine drugs in a Chinese megacity using WBE over a one-year period. Daily influent samples (n = 279) were collected from a wastewater treatment plant serving ~500,000 residents. All target drugs showed similar levels of consumption throughout the week. These findings were different to previous WBE studies in developed countries, where amphetamine-type drugs have shown higher consumption on weekends than during the week. Such a difference could be due to the users' demographics and behaviors as reported in previous surveys and warrant more research to help formulate appropriate drug control policies in China. Our study also observed that declining methamphetamine and ketamine consumption between 2012 and 2018, while consumption of MDMA and methadone were stable over the same period.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , China/epidemiología , Ciudades , Detección de Abuso de Sustancias , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
9.
Sci Total Environ ; 789: 148047, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34323839

RESUMEN

The medical and societal consequences of the misuse of pharmaceuticals clearly justify the need for comprehensive drug utilization research (DUR). Wastewater-based epidemiology (WBE) employs the analysis of human metabolic excretion products in wastewater to monitor consumption patterns of xenobiotics at the population level. Recently, WBE has demonstrated its potential to evaluate lifestyle factors such as illicit drug, alcohol and tobacco consumption at the population level, in near real-time and with high spatial and temporal resolution. Up until now there have been fewer WBE studies investigating health biomarkers such as pharmaceuticals. WBE publications monitoring the consumption of pharmaceuticals were systematically reviewed from three databases (PubMed, Web of Science and Google Scholar). 64 publications that reported population-normalised mass loads or defined daily doses of pharmaceuticals were selected. We document that WBE could be employed as a complementary information source for DUR. Interest in using WBE approaches for monitoring pharmaceutical use is growing but more foundation research (e.g. compound-specific uncertainties) is required to link WBE data to routine pharmacoepidemiologic information sources and workflows. WBE offers the possibility of i) estimating consumption of pharmaceuticals through the analysis of human metabolic excretion products in wastewater; ii) monitoring spatial and temporal consumption patterns of pharmaceuticals continuously and in near real-time; and iii) triangulating data with other DUR information sources to assess the impacts of strategies or interventions to reduce inappropriate use of pharmaceuticals.

10.
Environ Sci Technol ; 55(13): 8771-8782, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34157837

RESUMEN

In-sewer stability of biomarkers is a critical factor for wastewater-based epidemiology, as it could affect the accuracy of the estimated prevalence of substances in the community. The spatiotemporal variations of environmental and biological conditions in sewers can influence the transformation of biomarkers. To date, the relationship between environmental variables and biomarker stability in sewers is poorly understood. Therefore, this study evaluated the transformation of common illicit drug and pharmaceutical biomarkers in laboratory sewer reactors with different levels of pH, temperature, and suspended solids. The correlations between degradation rates of 14 biomarkers, 3 controlled environmental variables (pH, temperature, and suspended solids concentration), and 3 biological activity indicators (sulfide production rate, methane production rate, and the removal rate of soluble chemical oxygen demand (SCOD)) were assessed using correlation matrix, stepwise regression method, and principal component analysis. The consistent results affirmed the dominant effects of biological activities and pH on biomarker transformation in sewers, particularly for labile compounds, whereas the impact of temperature or suspended solids was less significant. This study enhances the understanding of factors affecting the fate of micropollutants in sewer systems and facilitates the interpretation of WBE results for assessing drug use and public health in communities.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , Biomarcadores , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado , Temperatura , Aguas Residuales , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Technol ; 55(11): 7551-7560, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33988986

RESUMEN

The correction factor (CF) is a critical parameter in wastewater-based epidemiology (WBE) that significantly influences the accuracy of the final consumption estimates. However, most CFs have been derived from a few old pharmacokinetic studies and should be re-evaluated and refined to improve the accuracy of the WBE approach. This study aimed to review and estimate the CFs for atenolol, carbamazepine, and naproxen for WBE using the daily mass loads of those pharmaceuticals in wastewater and their corresponding dispensed prescription data in Australia. Influent wastewater samples were collected from wastewater treatment plants serving approximately 24% of the Australian population and annual national dispensed prescription data. The estimated CFs for atenolol and carbamazepine are 1.37 (95% CI: 1.17-1.66) and 8.69 (95% CI: 7.66-10.03), respectively. Due to significant over-the-counter sales of naproxen, a reliable CF could not be estimated based on prescription statistics. Using an independent dataset of 186 and 149 wastewater samples collected in an urban catchment in 2011 and 2012, WBE results calculated using the new CFs matched well with the dispensed data for atenolol and carbamazepine in the catchment area.


Asunto(s)
Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua , Atenolol , Australia , Carbamazepina , Naproxeno , Prescripciones , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
12.
Chemosphere ; 279: 130590, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33895675

RESUMEN

China produced and consumed a large amount of per- and polyfluoroalkyl substances (PFASs). whose persistency and possible toxicity to organisms have raised public health concerns. Analyzing influent wastewater could help to assess the composition and mass load of PFASs discharged into a wastewater treatment plant (WWTP) from its catchment. In this study, we analyzed 27 PFASs in wastewater samples collected from 42 WWTPs across China in 2014 and 2016. Results indicated that perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were the most common PFASs in wastewater. Population normalized mass loads of PFOA and PFOS were higher in Eastern China than in the other three regions, possibly due to their higher usage. Although the concentrations of PFASs in Central and West areas were showed lower than in East area, Wuhan (in Central area) and Lanzhou (in West area) were hotspots of PFASs pollution because of their industry structure. Population density and per capita Gross Domestic Product (GDP) have positive correlations with the concentration of PFBA, PFOA, PFHxA, and ∑PFASs in wastewater. The estimated annual release of PFASs to WWTPs in our study is much lower than the total emission to the environment. Our results suggest that although there was some reduction in the production volume, certain legacy PFASs were still released into wastewater and their composition and concentration vary among WWTPs.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , China , Ciudades , Monitoreo del Ambiente , Fluorocarburos/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 781: 146690, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33812118

RESUMEN

Tannic acid is widely found in source water and wastewater, and it is also a typical degradation precursor of natural organic matter. In this study, focused on chloramination, the formation characteristics of halogenated DBPs from tannic acid biodegradation products were examined. Fifty-nine polar emerging DBPs (including four nitrogenous DBPs) were detected and forty of them were identified for the first time; meanwhile, their formation pathways were tentatively proposed. In general, much more polar emerging DBPs were formed at the early biodegradation stage than those at the later stage, while commonly observed aliphatic DBPs presented an exactly inverse trend, because initially-formed emerging DBPs can be transformed to those aliphatic DBPs by residual chloramine. Interestingly, while the relative formation level of brominated species in overall halogenated polar emerging DBPs maintained at high level at the later biodegradation stage during chlorination, it decreased significantly later during chloramination. The discrepancy may be due to that hydrolysis effects became dominant at this period in chloramination, whereas DBP formation from the reactions between slow reactive sites and hypohalous acids prevailed in chlorination. In addition, the calculated toxicity drivers among the 21 aliphatic DBPs were found to be haloacetonitriles, although they contribute mildly to the total concentration.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloraminas , Desinfección , Halogenación , Taninos , Contaminantes Químicos del Agua/análisis
14.
Environ Int ; 145: 106088, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32911244

RESUMEN

Measurement of population tobacco use via wastewater-based epidemiology (WBE) provides objective data to evaluate the efficacy of tobacco control strategies. However, current WBE tobacco-use estimates based on nicotine metabolites (cotinine and hydroxycotinine) can be masked by use of non-tobacco nicotine-containing products. To better understand nicotine and tobacco use, we analysed tobacco-specific biomarkers, anabasine and anatabine, as well as nicotine metabolites, cotinine and hydroxycotinine, in wastewater samples collected for 6 weeks per year over 6 years (2012-2017) from an Australian wastewater treatment plant serving approximately 100,000 people. Population-normalised mass loads were used to estimate tobacco and nicotine use trends and were compared with surveys and taxation statistics. Significant annual declines were observed for anabasine, anatabine, cotinine and hydroxycotinine of -3.0%, -2.7%, -2.4%, and -2.1%, respectively. The results corresponded with the annual declining trends reported from surveys (-5%) and taxation statistics (-4%). Significant annual decreases in the ratios of anabasine to cotinine (-1.2%) and anatabine to cotinine (-1.0%) suggested a relative increase in the use of non-tobacco nicotine products at the same time that tobacco use was declining. Monitoring tobacco use with anabasine and anatabine removed influence from nicotine-containing products, showing larger reductions in this Australian city than via nicotine biomarkers, whilst also demonstrating their suitability for monitoring long-term trends.


Asunto(s)
Nicotina , Monitoreo Epidemiológico Basado en Aguas Residuales , Anabasina , Australia/epidemiología , Cotinina , Humanos , Nicotiana , Uso de Tabaco
15.
Environ Sci Technol ; 54(20): 13056-13065, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32951431

RESUMEN

In-sewer stability of human excreted biomarkers is a critical factor of wastewater-based epidemiology in back-estimating illicit drug and pharmaceutical use in the community. Biomarker stability has been investigated in sewers with the presence of biofilms, but the understanding in sewer sediments is still lacking. This study for the first time employed a laboratory sediment reactor to measure 18 illicit drug and pharmaceutical biomarkers under gravity sewer environments with the presence of sediments. Biomarkers exhibited various stability patterns due to transformation processes occurring in the bulk wastewater and sediments. The attenuation of a biomarker by sediments is driven by complex processes involving biodegradation, diffusion, and sorption, which is directly proportional to the ratio of sediment surface area against wastewater volume. The sediment-driven transformation coefficients of biomarkers are higher than the accordingly biofilm-mediated rates because of stronger microbial activities in sediments. Additionally, the stability of most biomarkers was insensitive to the natural pH variation in sewers, except for a few compounds (e.g., methadone, ketamine, and paracetamol) susceptible to pH changes. In general, this study delineates the stability data of various biomarkers in gravity sewers with sediments, which are novel and long-missing information for wastewater-based epidemiology and improve the reliability of back-estimation in complex sewer networks.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , Humanos , Reproducibilidad de los Resultados , Aguas del Alcantarillado , Aguas Residuales , Contaminantes Químicos del Agua/análisis
16.
Environ Int ; 136: 105492, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31999969

RESUMEN

Monitoring the use of alcohol and tobacco in the population is important for public health planning and evaluating the efficacy of intervention strategies. The aim of this study was to use wastewater-based epidemiology (WBE) to estimate alcohol and tobacco consumption in a number of major cities across China and compare WBE estimates with other data sources. Daily composite influent wastewater samples were collected from wastewater treatment plants (WWTPs) across China in 2014 (n = 53) and 2016 (n = 45). The population-normalized daily consumption estimated by WBE were compared with other data sources where available. The average consumption of alcohol was 8.1 ± 7.0 mL ethanol/person aged 15+/day (EPD) in the investigated cities of 2016 while those involved in 2014 had an average consumption of 4.7 ± 3.0 EPD. The average tobacco consumption was estimated to be 3.7 ± 2.2 cigarettes/person aged 15+/day (CPD) in 2016 and 3.1 ± 1.9 CPD in 2014. The changes in the average consumption in those cities from 2014 to 2016 were supported by the results from a limited number of WWTPs where samples were collected in both years. Consumption of alcohol and tobacco in urban China is at a medium level compared with other countries on a per capita basis. WBE estimates of tobacco consumption were relatively comparable with results of traditional surveys and sales statistics. WBE estimates of alcohol consumption were lower than WHO survey results, probably due to EtS degradation and uncertainty in the EtS excretion factor.


Asunto(s)
Consumo de Bebidas Alcohólicas , Nicotina , Fumar , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua , Consumo de Bebidas Alcohólicas/epidemiología , China , Ciudades , Etanol , Humanos , Fumar/epidemiología , Aguas Residuales
17.
Sci Total Environ ; 709: 136228, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31887516

RESUMEN

Wastewater-based epidemiology is an increasingly popular method for analysing drugs or metabolites excreted by populations. The in-sewer transformation of biomarkers is important but often receives little consideration in published studies. Many studies publish stability under biofilm-free conditions only, which do not represent actual sewer conditions. This study aims to fill a gap in the field by comparing the wastewater stability of 33 licit drug and pharmaceutical biomarkers in biofilm-free (BFF) conditions to stability in sewer biofilm reactors. All but one biomarker was stable under BFF conditions, whereas most transformed in sewer biofilm reactors. Sewer reactor results tended to overestimate the degradation in pilot and actual sewers, whereas BFF stability had no clear relationship to stability in pilot and actual sewers. Our results provide additional basis for more informed interpretation of biofilm-free and sewer reactor stability results for past and future WBE studies.


Asunto(s)
Aguas del Alcantarillado , Biopelículas , Biomarcadores , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua
18.
Environ Sci Pollut Res Int ; 26(23): 23593-23602, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31203544

RESUMEN

Wastewater-based epidemiology (WBE) has been widely used as a complementary method for estimating consumption of illicit drugs in the population. Temporal drug consumption estimates derived from WBE can provide important information for law enforcement and public health authorities in understanding changes in supply and demand of illicit drugs, but currently lacking in China. In this study, influent wastewater samples from a municipal sewage treatment plant in Guangzhou, China were collected for 8 weeks to investigate the temporal change in consumption of six illicit drugs in the catchment. The results indicated that methamphetamine and ketamine were the dominant illicit drugs in Guangzhou with the per capita use of 14.7-470.7 mg/day/1000 people and 64.9-673.7 mg/day/1000 people, respectively. No distinct weekly patterns were observed for illicit drug consumption in Guangzhou, indicating that drug users are likely to be regular ones. Further assessment about the impact of public holidays on the consumption behavior of drugs showed little impact for ketamine (p = 0.689), but higher consumptions of methamphetamine (p = 0.003) and cocaine (p = 0.027) were observed during public holidays than the control period. The considerable decrease in drug consumption observed in October 2017 compared with January and May 2017 was possibly the consequence of law enforcement action.


Asunto(s)
Drogas Ilícitas/análisis , Trastornos Relacionados con Sustancias/epidemiología , Aguas Residuales/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , China/epidemiología , Cocaína/análisis , Humanos , Metanfetamina/análisis , Detección de Abuso de Sustancias , Aguas Residuales/análisis
19.
Environ Sci Technol ; 53(11): 6245-6254, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31067854

RESUMEN

Ferric (Fe3+) salt dosing is an efficient sulfide control strategy in the sewer network, with potential for multiple benefits including phosphorus removal in the biological reactors and sulfide emission control in the anaerobic digesters of wastewater treatment plant (WWTP). This paper extends the knowledge on the benefit of iron dosing by exploring its impact on the fate of organic micropollutants (MPs) in the wastewater using sewer reactors simulating a rising main sewer pipe. The sulfide produced by the sewer biofilms reacted with Fe3+ forming black colored iron sulfide (FeS). Among the selected MPs, morphine, methadone, and atenolol had >90% initial rapid removal within 5 min of ferric dosing in the sewer reactor. The ultimate removal after 6 h of retention time in the reactor reached 93-97%. Other compounds, ketamine, codeine, carbamazepine, and acesulfame had 30-70% concentration decrease. The ultimate removal varied between 35 and 70% depending on the biodegradability of those MPs. In contrast, paracetamol had no initial removal. The rapid removal of MPs was likely due to adsorption to the FeS surface, which is further confirmed by batch tests with different FeS concentrations. The results showed a direct relationship between the removal of MPs and FeS concentration. The transformation kinetics of these compounds in the reactor without Fe3+ dosing is in good agreement with biodegradation associated with the sewer biofilms in the reactor. This study revealed a significant additional benefit of dosing ferric salts in sewers, that is, the removal of MPs before the sewage enters the WWTP.


Asunto(s)
Drogas Ilícitas , Aguas Residuales , Hierro , Aguas del Alcantarillado , Sulfuros
20.
Environ Sci Technol ; 53(8): 4556-4565, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30852889

RESUMEN

In-sewer stability of illicit drug biomarkers has been evaluated by several reactor-based studies, but less has been done in sewer pipes. Experiments conducted in sewer pipes have advantages over lab-scale reactors in providing more realistic biomarker stability due to the flow and biological dynamics. This study assessed the transportation and transformation of seven illicit drug biomarker compounds in a pilot-scale rising main and a gravity sewer pipe. Biomarkers presented diverse stability patterns in the pilot sewers, based on which a drug transformation model was calibrated. This model was subsequently validated using transformation data sets from the literature, aiming to demonstrate the predictability of the pilot-based transformation coefficients under varying sewer conditions. Furthermore, transformation coefficients for five investigated biomarkers were generated from four studies, and their prediction capabilities under the pilot-sewer conditions were jointly assessed using performance statistics. The transformation model was successful in simulating the in-sewer stability for most illicit drugs. However, further study is required to delineate the sources and pathways for those compounds with potential formations to be simulated in the transformation model. Overall, the transformation model calibrated using the pilot-sewer data is a credible tool for the application of wastewater-based epidemiology.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , Biomarcadores , Aguas del Alcantarillado , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...