Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Sci Data ; 11(1): 775, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003271

RESUMEN

Kmeria septentrionalis is a critically endangered tree endemic to Guangxi, China, and is listed on the International Union for Conservation of Nature's Red List. The lack of genetic information and high-quality genome data has hindered conservation efforts and studies on this species. In this study, we present a chromosome-level genome assembly of K. septentrionalis. The genome was initially assembled to be 2.57 Gb, with a contig N50 of 11.93 Mb. Hi-C guided genome assembly allowed us to anchor 98.83% of the total length of the initial contigs onto 19 pseudochromosomes, resulting in a scaffold N50 of 135.08 Mb. The final chromosome-level genome, spaning 2.54 Gb, achieved a BUSCO completeness of 98.9% and contained 1.67 Gb repetitive elements and 35,927 coding genes. This high-quality genome assembly provides a valuable resource for understanding the genetic basis of conservation-related traits and biological properties of this endangered tree species. Furthermore, it lays a critical foundation for evolutionary studies within the Magnoliaceae family.


Asunto(s)
Especies en Peligro de Extinción , Genoma de Planta , Cromosomas de las Plantas , China , Árboles/genética
2.
PLoS One ; 19(6): e0304283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848379

RESUMEN

Intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections have emerged as the most common therapeutic approach for the management of diabetic macular edema (DME). Despite their proven superiority over other interventions, there is a paucity of data regarding the relative effectiveness of anti-VEGF agents in treating DME diagnosed with different patterns of optical coherence tomography (OCT). In this regard, we conducted a systematic review and comparative analysis of the therapeutic efficacy of intravitreal bevacizumab, ranibizumab, aflibercept, and conbercept in the management of DME with diffuse retinal thickening (DRT), cystoid macular edema (CME), and serous retinal detachment (SRD) patterns identified using OCT. Our study encompassed a comprehensive search of PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), and Wan Fang Data from their inception until January 25, 2023. The network meta-analysis involved the inclusion of 1606 patients from 20 retrospective studies with a moderate risk of bias but no evidence of publication bias. The DRT group had the highest increase in best-corrected visual acuity (BCVA) with anti-VEGF, while the SRD group had the greatest reduction in Central Macular Thickness (CMT). Furthermore, conbercept, ranibizumab, and bevacizumab, respectively, showed the best treatment outcomes for patients with DRT, CME, and SRD in terms of improvement in BCVA. And, conbercept exhibited the highest reduction in CMT in the DRT, CME, and SRD groups. In conclusion, our study highlights the efficacy of anti-VEGF agents in the management of DME and provides valuable insights into the selection of anti-VEGF agents tailored to the individual needs of patients.


Asunto(s)
Inhibidores de la Angiogénesis , Retinopatía Diabética , Edema Macular , Factor A de Crecimiento Endotelial Vascular , Humanos , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/administración & dosificación , Bevacizumab/uso terapéutico , Bevacizumab/administración & dosificación , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/diagnóstico por imagen , Inyecciones Intravítreas , Edema Macular/tratamiento farmacológico , Edema Macular/diagnóstico por imagen , Metaanálisis en Red , Ranibizumab/uso terapéutico , Ranibizumab/administración & dosificación , Receptores de Factores de Crecimiento Endotelial Vascular/uso terapéutico , Receptores de Factores de Crecimiento Endotelial Vascular/administración & dosificación , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Recombinantes de Fusión/administración & dosificación , Tomografía de Coherencia Óptica , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Agudeza Visual/efectos de los fármacos
3.
J Exp Clin Cancer Res ; 43(1): 168, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877579

RESUMEN

PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.


Asunto(s)
Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/patología , Muerte Celular , Necroptosis , Microambiente Tumoral/inmunología , Animales , Piroptosis , Apoptosis
4.
Virology ; 597: 110149, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917689

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant socioeconomic burden, and combating COVID-19 is imperative. Blocking the SARS-CoV-2 RBD-ACE2 interaction is a promising therapeutic approach for viral infections, as SARS-CoV-2 binds to the ACE2 receptors of host cells via the RBD of spike proteins to infiltrate these cells. We used computer-aided drug design technology and cellular experiments to screen for peptide S4 with high affinity and specificity for the human ACE2 receptor through structural analysis of SARS-CoV-2 and ACE2 interactions. Cellular experiments revealed that peptide S4 effectively inhibited SARS-CoV-2 and HCoV-NL63 viruses from infecting host cells and was safe for cells at effective concentrations. Based on these findings, peptide S4 may be a potential pharmaceutical agent for clinical application in the treatment of the ongoing SARS-CoV-2 pandemic.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales , Péptidos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Internalización del Virus/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Péptidos/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Unión Proteica , COVID-19/virología , Coronavirus Humano NL63/efectos de los fármacos , Coronavirus Humano NL63/fisiología , Chlorocebus aethiops , Animales
5.
J Multidiscip Healthc ; 17: 2175-2184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736540

RESUMEN

With the continuous development and progress of medicine, there are many methods for the treatment of temporomandibular disorders, among which temporomandibular joint lavage is also constantly developed. In the past century, through the efforts of some scholars and clinical summary, the understanding of this disease has been deepened and broadened. At present, through continuous exploration of the treatment methods, the lavage is relatively mature, and has achieved good clinical results. In this paper, the application of temporomandibular joint lavage in the treatment of temporomandibular joint disorders, its treatment methods, treatment mechanism, the auxiliary of other drugs, indications, complications and so on were discussed.

6.
Nat Commun ; 15(1): 4228, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762498

RESUMEN

Cross-modal analysis of the same whole brain is an ideal strategy to uncover brain function and dysfunction. However, it remains challenging due to the slow speed and destructiveness of traditional whole-brain optical imaging techniques. Here we develop a new platform, termed Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN), for non-destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human primate brains. Using an optimally designed image acquisition scheme and an accompanying machine-learning algorithm, PATTERN extracts signals of genetically-encoded probes from photobleaching-based temporal modulation and enables reliable visualization of neural projection in the whole central nervous system with 3D isotropic resolution. Without structural and biological perturbation to the sample, PATTERN can be combined with other whole-brain imaging modalities to acquire the whole-brain image with both high resolution and morphological fidelity. Furthermore, cross-modal transcriptome analysis of an individual brain is achieved by PATTERN imaging. Together, PATTERN provides a compatible and versatile strategy for brain-wide cross-modal analysis at the individual level.


Asunto(s)
Encéfalo , Hurones , Imagenología Tridimensional , Técnicas Fotoacústicas , Animales , Encéfalo/diagnóstico por imagen , Técnicas Fotoacústicas/métodos , Imagenología Tridimensional/métodos , Ratones , Algoritmos , Aprendizaje Automático , Tomografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Ratas , Masculino
7.
Biofabrication ; 16(3)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38663395

RESUMEN

Three-dimensional (3D) cell culture has been used in many fields of biology because of its unique advantages. As a representative of the 3D systems, 3D spheroids are used as building blocks for tissue construction. Larger tumor aggregates can be assembled by manipulating or stacking the tumor spheroids. The motivation of this study is to investigate the behavior of the cells distributed at different locations of the spheroids in the fusion process and the mechanism behind it. To this aim, spheroids with varying grades of maturity or age were generated for fusion to assemble micro-tumor tissues. The dynamics of the fusion process, the motility of the cells distributed in different heterogeneous architecture sites, and their reactive oxygen species profiles were studied. We found that the larger the spheroid necrotic core, the slower the fusion rate of the spheroid. The cells that move were mainly distributed on the spheroid's surface during fusion. In addition to dense microfilament distribution and low microtubule content, the reactive oxygen content was high in the fusion site, while the non-fusion site was the opposite. Last, multi-spheroids with different maturities were fused to complex micro-tissues to mimic solid tumors and evaluate Doxorubicin's anti-tumor efficacy.


Asunto(s)
Doxorrubicina , Especies Reactivas de Oxígeno , Esferoides Celulares , Esferoides Celulares/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/patología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Doxorrubicina/farmacología , Fusión Celular , Neoplasias/patología , Neoplasias/metabolismo , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células , Movimiento Celular , Ingeniería de Tejidos
8.
Genes (Basel) ; 15(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38540394

RESUMEN

Magnolia kwangsiensis, a dioecious tree native to China, is recognized not only for its status as an at-risk species but also for its potential in therapeutic applications courtesy of its bioactive compounds. However, the genetic underpinnings of its leaf development and compound biosynthesis are not well documented. Our study aims to bridge this knowledge gap through comparative transcriptomics, analyzing gene expression through different leaf maturation stages. We studied the transcriptome of M. kwangsiensis leaves by applying RNA sequencing at juvenile, tender, and mature phases. We identified differentially expressed genes (DEGs) to explore transcriptional changes accompanying the developmental trajectory. Our analysis delineates the transcriptional landscape of over 20,000 genes with over 6000 DEGs highlighting significant transcriptional shifts throughout leaf maturation. Mature leaves demonstrated upregulation in pathways related to photosynthesis, cell wall formation, and polysaccharide production, affirming their structural integrity and specialized metabolic functions. Our GO and KEGG enrichment analyses underpin these findings. Furthermore, we unveiled coordinated gene activity correlating development with synthesizing therapeutically relevant polysaccharides. We identified four novel glycosyltransferases potentially pivotal in this synergistic mechanism. Our study uncovers the complementary evolutionary forces that concurrently sculpt structural and chemical defenses. These genetic mechanisms calibrate leaf tissue resilience and biochemical efficacy.


Asunto(s)
Magnolia , Magnolia/genética , Perfilación de la Expresión Génica , Transcriptoma/genética , Hojas de la Planta/genética , Hojas de la Planta/química , Análisis de Secuencia de ARN
10.
Adv Mater ; 36(4): e2305190, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37640375

RESUMEN

New-fashioned electrode hosts for sodium-ion batteries (SIBs) are elaborately engineered to involve multifunctional active components that can synergistically conquer the critical issues of severe volume deformation and sluggish reaction kinetics of electrodes toward immensely enhanced battery performance. Herein, it is first reported that single-phase CoPS, a new metal phosphosulfide for SIBs, in the form of quantum dots, is successfully introduced into a leaf-shaped conductive carbon nanosheet, which can be further in situ anchored on a 3D interconnected branch-like N-doped carbon nanofiber (N-CNF) to construct a hierarchical branch-leaf-shaped CoPS@C@N-CNF architecture. Both double carbon decorations and ultrafine crystal of the CoPS in-this exquisite architecture hold many significant superiorities, such as favorable train-relaxation, fast interfacial ion-migration, multi-directional migration pathways, and sufficiently exposed Na+ -storage sites. In consequence, the CoPS@C@N-CNF affords remarkable long-cycle durability over 10 000 cycles at 20.0 A g-1 and superior rate capability. Meanwhile, the CoPS@C@N-CNF-based sodium-ion full cell renders the potential proof-of-feasibility for practical applications in consideration of its high durability over a long-term cyclic lifespan with remarkable reversible capacity. Moreover, the phase transformation mechanism of the CoPS@C@N-CNF and fundamental springhead of the enhanced performance are disclosed by in situ X-ray diffraction, ex situ high-resolution TEM, and theoretical calculations.

11.
Nat Commun ; 14(1): 7476, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978295

RESUMEN

As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.


Asunto(s)
Caenorhabditis elegans , Factores de Diferenciación de Crecimiento , Adulto , Ratones , Humanos , Animales , Caenorhabditis elegans/metabolismo , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Envejecimiento/genética , Encéfalo/metabolismo , Neuronas/metabolismo , Proteínas Morfogenéticas Óseas
12.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894808

RESUMEN

Ferroptosis is an iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species and lipid peroxidation. It plays a critical role not only in promoting drug resistance in tumors, but also in shaping therapeutic approaches for various malignancies. This review aims to elucidate the relationship between ferroptosis and head and neck cancer treatment by discussing its conceptual framework, mechanism of action, functional aspects, and implications for tumor therapy. In addition, this review consolidates strategies aimed at improving the efficacy of head and neck cancer treatment through modulation of ferroptosis, herein serving as a valuable reference for advancing the treatment landscape for this patient population.


Asunto(s)
Ferroptosis , Neoplasias de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Muerte Celular , Hierro , Peroxidación de Lípido , Especies Reactivas de Oxígeno
13.
Molecules ; 28(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836815

RESUMEN

Photodynamic therapy (PDT) is an effective noninvasive therapeutic strategy that has been widely used for anti-tumor therapy by the generation of excessive highly cytotoxic ROS. However, the poor water solubility of the photosensitizer, reactive oxygen species (ROS) depleting by high concentrations of glutathione (GSH) in the tumor microenvironment and the activation of DNA repair pathways to combat the oxidative damage, will significantly limit the therapeutic effect of PDT. Herein, we developed a photosensitizer prodrug (CSP) by conjugating the photosensitizer pyropheophorbide a (PPa) and the DNA-damaging agent Chlorambucil (Cb) with a GSH-responsive disulfide linkage and demonstrated a multifunctional co-delivery nanoplatform (CSP/Ola nanoparticles (NPs)) together with DSPE-PEG2000 and PARP inhibitor Olaparib (Ola). The CSP/Ola NPs features excellent physiological stability, efficient loading capacity, much better cellular uptake behavior and photodynamic performance. Specifically, the nanoplatform could induce elevated intracellular ROS levels upon the in situ generation of ROS during PDT, and decrease ROS consumption by reducing intracellular GSH level. Moreover, the CSP/Ola NPs could amplify DNA damage by released Cb and inhibit the activation of Poly(ADP-ribose) polymerase (PARP), promote the upregulation of γ-H2AX, thereby blocking the DNA repair pathway to sensitize tumor cells for PDT. In vitro investigations revealed that CSP/Ola NPs showed excellent phototoxicity and the IC50 values of CSP/Ola NPs against MDA-MB-231 breast cancer cells were as low as 0.05-01 µM after PDT. As a consequence, the co-delivery nanoplatform greatly promotes the tumor cell apoptosis and shows a high antitumor performance with combinational chemotherapy and PDT. Overall, this work provides a potential alternative to improve the therapeutic efficiency of triple negative breast cancer cell (TNBC) treatment by synergistically enhancing DNA damage and disrupting DNA damage repair.


Asunto(s)
Antineoplásicos , Nanopartículas , Fotoquimioterapia , Neoplasias de la Mama Triple Negativas , Humanos , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Daño del ADN , Línea Celular Tumoral , Microambiente Tumoral
14.
Natl Sci Rev ; 10(11): nwad194, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37818111

RESUMEN

Human speech and animal vocalizations are important for social communication and animal survival. Neurons in the auditory pathway are responsive to a range of sounds, from elementary sound features to complex acoustic sounds. For social communication, responses to distinct patterns of vocalization are usually highly specific to an individual conspecific call, in some species. This includes the specificity of sound patterns and embedded biological information. We conducted single-unit recordings in the amygdala of awake marmosets and presented calls used in marmoset communication, calls of other species and calls from specific marmoset individuals. We found that some neurons (47/262) in the amygdala distinguished 'Phee' calls from vocalizations of other animals and other types of marmoset vocalizations. Interestingly, a subset of Phee-responsive neurons (22/47) also exhibited selectivity to one out of the three Phees from two different 'caller' marmosets. Our findings suggest that, while it has traditionally been considered the key structure in the limbic system, the amygdala also represents a critical stage of socially relevant auditory perceptual processing.

15.
J Vis Exp ; (196)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358299

RESUMEN

The common marmoset (Callithrix jacchus) is a small and highly social New World monkey with high reproduction rates, which has been proven to be a compelling non-human primate model for biomedical and neuroscience research. Some females give birth to triplets; however, the parents cannot raise all of them. To save these infants, we have developed a hand-rearing method for raising newborn marmosets. In this protocol, we describe the formula of the food, the time for feeding, the configuration of the temperature and humidity, as well as the adaptation of the hand-reared infants to the colony environment. This hand-rearing method significantly increases the survival rate of marmoset infants (without hand-rearing: 45%; with hand-rearing: 86%) and provides the opportunity to study the development of marmoset infants with similar genetic backgrounds raised in different postnatal environments. As the method is practical and easy to use, we anticipate that it could also be applied to other labs working with common marmosets.


Asunto(s)
Callithrix , Alimentos , Animales , Femenino
16.
Front Immunol ; 14: 1184252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325634

RESUMEN

Primary biliary cholangitis (PBC) is an immune-mediated liver disease characterized by cholestasis, biliary injuries, liver fibrosis, and chronic non-suppurative cholangitis. The pathogenesis of PBC is multifactorial and involves immune dysregulation, abnormal bile metabolism, and progressive fibrosis, ultimately leading to cirrhosis and liver failure. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) are currently used as first- and second-line treatments, respectively. However, many patients do not respond adequately to UDCA, and the long-term effects of these drugs are limited. Recent research has advanced our understanding the mechanisms of pathogenesis in PBC and greatly facilitated development of novel drugs to target mechanistic checkpoints. Animal studies and clinical trials of pipeline drugs have yielded promising results in slowing disease progression. Targeting immune mediated pathogenesis and anti-inflammatory therapies are focused on the early stage, while anti-cholestatic and anti-fibrotic therapies are emphasized in the late stage of disease, which is characterized by fibrosis and cirrhosis development. Nonetheless, it is worth noting that currently, there exists a dearth of therapeutic options that can effectively impede the progression of the disease to its terminal stages. Hence, there is an urgent need for further research aimed at investigating the underlying pathophysiology mechanisms with potential therapeutic effects. This review highlights our current knowledge of the underlying immunological and cellular mechanisms of pathogenesis in PBC. Further, we also address current mechanism-based target therapies for PBC and potential therapeutic strategies to improve the efficacy of existing treatments.


Asunto(s)
Colangitis , Colestasis , Cirrosis Hepática Biliar , Animales , Cirrosis Hepática Biliar/tratamiento farmacológico , Cirrosis Hepática Biliar/etiología , Ácido Ursodesoxicólico/uso terapéutico , Colangitis/tratamiento farmacológico , Colangitis/patología , Colestasis/tratamiento farmacológico , Fibrosis
17.
Neurosci Bull ; 39(11): 1669-1682, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37368194

RESUMEN

The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases, such as depression and anxiety. Meanwhile, the endocannabinoid system plays a crucial role in regulating emotions and mainly functions through the cannabinoid type-1 receptor (CB1R), which is strongly expressed in the amygdala of non-human primates (NHPs). However, it remains largely unknown how the CB1Rs in the amygdala of NHPs regulate mental diseases. Here, we investigated the role of CB1R by knocking down the cannabinoid receptor 1 (CNR1) gene encoding CB1R in the amygdala of adult marmosets through regional delivery of AAV-SaCas9-gRNA. We found that CB1R knockdown in the amygdala induced anxiety-like behaviors, including disrupted night sleep, agitated psychomotor activity in new environments, and reduced social desire. Moreover, marmosets with CB1R-knockdown had up-regulated plasma cortisol levels. These results indicate that the knockdown of CB1Rs in the amygdala induces anxiety-like behaviors in marmosets, and this may be the mechanism underlying the regulation of anxiety by CB1Rs in the amygdala of NHPs.


Asunto(s)
Callithrix , Cannabinoides , Animales , Receptores de Cannabinoides , Ansiedad , Amígdala del Cerebelo , Fenotipo
18.
Patient Prefer Adherence ; 17: 413-420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815127

RESUMEN

Objective: To explore the effect of multimodal health education combined with a feedback method in perioperative patients with lung cancer. Methods: A total of 200 lung cancer patients were divided into the observation group and the control group. The observation group adopted the multimodal health education combined with the feedback method, and the control group adopted the conventional health education model. The postoperative extubation time, length of hospital stay, time to first leaving the bed, postoperative exercise compliance, emotional-distress index and patient satisfaction were compared between the two groups. Results: The postoperative extubation time (2.80 ± 1.03 days), the emotional-distress index (8.26 ± 3.01) and the time to first leaving the bed (23.74 ± 11.87 h) were all lower in the observation group than in the control group, with a statistically significant difference (P < 0.05). The postoperative exercise compliance (49.69 ± 3.60) and patient satisfaction (98.32 ± 1.66) values were higher in the observation group than in the control group, with statistically significant differences (P < 0.05). Conclusion: Multimodal health education combined with the feedback method can improve the postoperative exercise compliance of lung cancer patients, reduce their postoperative rehabilitation time and improve their postoperative psychological state and satisfaction, which is in line with the concept of promoting the enhanced recovery of lung cancer patients.

19.
Clin Rev Allergy Immunol ; 65(2): 101-120, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36757537

RESUMEN

The human gastrointestinal tract houses an enormous microbial ecosystem. Recent studies have shown that the gut microbiota plays significant physiological roles and maintains immune homeostasis in the human body. Dysbiosis, an imbalanced gut microbiome, can be associated with various disease states, as observed in infectious diseases, inflammatory diseases, autoimmune diseases, and cancer. Modulation of the gut microbiome has become a therapeutic target in treating these disorders. Fecal microbiota transplantation (FMT) from a healthy donor restores the normal gut microbiota homeostasis in the diseased host. Ample evidence has demonstrated the efficacy of FMT in recurrent Clostridioides difficile infection (rCDI). The application of FMT in other human diseases is gaining attention. This review aims to increase our understanding of the mechanisms of FMT and its efficacies in human diseases. We discuss the application, route of administration, limitations, safety, efficacies, and suggested mechanisms of FMT in rCDI, autoimmune diseases, and cancer. Finally, we address the future perspectives of FMT in human medicine.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbiota , Neoplasias , Humanos , Trasplante de Microbiota Fecal , Heces , Clostridioides difficile/fisiología , Infecciones por Clostridium/terapia , Resultado del Tratamiento
20.
J Exp Clin Cancer Res ; 42(1): 1, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36588153

RESUMEN

BACKGROUND: Enolase 2 (ENO2) is a crucial glycolytic enzyme in cancer metabolic process and acts as a "moonlighting" protein to play various functions in diverse cellular processes unrelated to glycolysis. ENO2 is highly expressed in head and neck squamous cell carcinoma (HNSCC) tissues relative to normal tissues; however, its impact and underlying regulatory mechanisms in HNSCC malignancy remain unclear. METHODS: Molecular alterations were examined by bioinformatics, qRT-PCR, western blotting, immunofluorescence, immunohistochemistry, immunoprecipitation, and ChIP-PCR assays. Metabolic changes were assessed by intracellular levels of ATP and glucose. Animal study was used to evaluate the therapeutic efficacy of the ENO inhibitor. RESULTS: ENO2 is required for HNSCC cell proliferation and glycolysis, which, surprisingly, is partially achieved by controlling PKM2 protein stability and its nuclear translocation. Mechanistically, loss of ENO2 expression promotes PKM2 protein degradation via the ubiquitin-proteasome pathway and prevents the switch of cytoplasmic PKM2 to the nucleus by inactivating AKT signaling, leading to a blockade in PKM2-mediated glycolytic flux and CCND1-associated cell cycle progression. In addition, treatment with the ENO inhibitor AP-III-a4 significantly induces HNSCC remission in a preclinical mouse model. CONCLUSION: Our work elucidates the signaling basis underlying ENO2-dependent HNSCC development, providing evidence to establish a novel ENO2-targeted therapy for treating HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Fosfopiruvato Hidratasa , Piruvato Quinasa , Animales , Ratones , Línea Celular Tumoral , Glucólisis , Neoplasias de Cabeza y Cuello/genética , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Piruvato Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA