Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(10): e2305249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38449432
2.
Nat Commun ; 15(1): 1626, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388471

RESUMEN

Developing strategies that emulate the killing mechanism of neutrophils, which involves the enzymatic cascade of superoxide dismutase (SOD) and myeloperoxidase (MPO), shows potential as a viable approach for cancer therapy. Nonetheless, utilizing natural enzymes as therapeutics is hindered by various challenges. While nanozymes have emerged for cancer treatment, developing SOD-MPO cascade in one nanozyme remains a challenge. Here, we develop nanozymes possessing both SOD- and MPO-like activities through alloying Au and Pd, which exhibits the highest cascade activity when the ratio of Au and Pd is 1:3, attributing to the high d-band center and adsorption energy for superoxide anions, as determined through theoretical calculations. The Au1Pd3 alloy nanozymes exhibit excellent tumor therapeutic performance and safety in female tumor-bearing mice, with safety attributed to their tumor-specific killing ability and renal clearance ability caused by ultrasmall size. Together, this work develops ultrasmall AuPd alloy nanozymes that mimic neutrophil enzymatic cascades for catalytic treatment of tumors.


Asunto(s)
Nanoestructuras , Neoplasias , Femenino , Animales , Ratones , Neutrófilos , Catálisis , Superóxido Dismutasa , Neoplasias/tratamiento farmacológico
3.
Biomacromolecules ; 25(3): 1602-1611, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38323536

RESUMEN

Helicobacter pylori can cause various gastric conditions including stomach cancer in an acidic environment. Although early H. pylori infections can be treated by antibiotics, prolonged antibiotic administrations may lead to the development of antimicrobial resistance, compromising the effectiveness of the treatments. Antimicrobial peptides (AMPs) have been reported to possess unique advantages against antimicrobial-resistant bacteria due to their rapid physical membrane disruptions and anti-inflammation/immunoregulation properties. Herein, we have developed an AMP hydrogel, which can be orally administered for the treatment of H. pylori infection. The hydrogel has potent antimicrobial activity against H. pylori, achieving bacterial eradication within minutes of action. Compared with the AMP solution, the hydrogel formulation significantly reduced the cytotoxicity and enhanced proteolytic stability. In vivo experiments suggested that the hydrogel formed at pH 4 had superior therapeutic effects to those at pH 7 and 10 hydrogels, attributed to its rapid release and bactericidal action within the acidic stomach environment. Compared to conventional antibiotic treatments, the AMP hydrogel had the advantages of fast bacterial killing in the gastric juice and obviated proton pump inhibitors during the treatment. Although both the AMP hydrogel and antibiotics suppressed the expression of pro-inflammatory cytokines, the former uniquely promoted inflammation resolution. These results indicate that the AMP hydrogels with effectiveness and biosafety may be potential candidates for the clinical treatment of H. pylori infections.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Péptidos Antimicrobianos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Antibacterianos
4.
Small ; : e2309431, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38402425

RESUMEN

Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) is a promising gene editing tool to treat diseases at the genetic level. Nonetheless, the challenge of the safe and efficient delivery of CRISPR/Cas9 to host cells constrains its clinical applicability. In the current study, a facile, redox-responsive CRISPR/Cas9-Ribonucleoprotein (RNP) delivery system by combining iron-coordinated aggregation with liposomes (Fe-RNP@L) is reported. The Fe-RNP is formed by the coordination of Fe3+ with amino and carboxyl groups of Cas9, which modifies the lipophilicity and surface charge of RNP and alters cellular uptake from primary endocytosis to endocytosis and cholesterol-dependent membrane fusion. RNP can be rapidly and reversibly released from Fe-RNP in response to glutathione without loss of structural integrity and enzymatic activity. In addition, iron coordination also improves the stability of RNP and substantially mitigates cytotoxicity. This construct enabled highly efficient cytoplasmic/nuclear delivery (≈90%) and gene-editing efficiency (≈70%) even at low concentrations. The high payload content, high editing efficiency, good stability, low immunogenicity, and ease of production and storage, highlight its potential for diverse genome editing and clinical applications.

5.
Adv Mater ; 36(15): e2309669, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38216154

RESUMEN

Outbreaks of viral infectious diseases, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV), pose a great threat to human health. Viral spread is accelerated worldwide by the development of cold chain logistics; Therefore, an effective antiviral approach is required. In this study, it is aimed to develop a distinct antiviral strategy using nanozymes with low-temperature adaptability, suitable for cold chain logistics. Phosphorus (P) atoms are added to the remote counter position of Fe-N-C center to prepare FeN4P2-single-atom nanozymes (SAzymes), exhibiting lipid oxidase (OXD)-like activity at cold chain temperatures (-20, and 4 °C). This feature enables FeN4P2-SAzymes to disrupt multiple enveloped viruses (human, swine, and avian coronaviruses, and H1-H11 subtypes of IAV) by catalyzing lipid peroxidation of the viral lipid envelope. Under the simulated conditions of cold chain logistics, FeN4P2-SAzymes are successfully applied as antiviral coatings on outer packaging and personal protective equipment; Therefore, FeN4P2-SAzymes with low-temperature adaptability and broad-spectrum antiviral properties may serve as key materials for developing specific antiviral approaches to interrupt viral transmission through the cold chain.


Asunto(s)
Hierro , Refrigeración , Animales , Humanos , Porcinos , Temperatura , SARS-CoV-2 , Antivirales , Lípidos
6.
ACS Nano ; 18(4): 2533-2540, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38215476

RESUMEN

Nanozymes, nanomaterials exhibiting enzyme-like activities, have emerged as a prominent interdisciplinary field over the past decade. To date, over 1200 different nanomaterials have been identified as nanozymes, covering four catalytic categories: oxidoreductases, hydrolases, isomerases, and lyases. Catalytic activity and specificity are two pivotal benchmarks for evaluating enzymatic performance. Despite substantial progress being made in quantifying and optimizing the catalytic activity of nanozymes, there is still a lack of in-depth research on the catalytic specificity of nanozymes, preventing the formation of consensual knowledge and impeding a more refined and systematic classification of nanozymes. Recently, debates have emerged regarding whether nanozymes could possess catalytic specificity similar to that of enzymes. This Perspective discusses the specificity of nanozymes by referring to the catalytic specificity of enzymes, highlights the specificity gap between nanozymes and enzymes, and concludes by offering our perspective on future research on the specificity of nanozymes.


Asunto(s)
Nanoestructuras , Catálisis
7.
Adv Mater ; 36(10): e2300387, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37086206

RESUMEN

Nanozymes have great potential to be used as an alternative to natural enzymes in a variety of fields. However, low catalytic activity compared with natural enzymes limits their practical use. It is still challenging to design nanozymes comparable to their natural counterparts in terms of the specific activity. In this study, a surface engineering strategy is employed to improve the specific activity of Ru nanozymes using charge-transferrable ligands such as polystyrene sulfonate (PSS). PSS-modified Ru nanozyme exhibits a peroxidase-like specific activity of up to 2820 U mg-1 , which is twice that of horseradish peroxidase (1305 U mg-1 ). Mechanism studies suggest that PSS readily accepts negative charge from Ru, thus reducing the affinity between Ru and ·OH. Importantly, the modified Ru-peroxidase nanozyme is successfully used to develop an immunoassay for human alpha-fetoprotein and achieves a 140-fold increase in detection sensitivity compared with traditional horseradish-peroxidase-based enzyme-linked immunosorbent assay. Therefore, this work provides a feasible route to design nanozymes with high specific activity that meets the practical use as an alternative to natural enzymes.


Asunto(s)
Rutenio , Humanos , Peroxidasa de Rábano Silvestre , Ligandos , Peroxidasa , Peroxidasas , Inmunoensayo
8.
Small ; 20(4): e2304968, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715278

RESUMEN

The contrast agents and tumor treatments currently used in clinical practice are far from satisfactory, due to the specificity of the tumor microenvironment (TME). Identification of diagnostic and therapeutic reagents with strong contrast and therapeutic effect remains a great challenge. Herein, a novel carbon dot nanozyme (Mn-CD) is synthesized for the first time using toluidine blue (TB) and manganese as raw materials. As expected, the enhanced magnetic resonance (MR) imaging capability of Mn-CDs is realized in response to the TME (acidity and glutathione), and r1 and r2 relaxation rates are enhanced by 224% and 249%, respectively. In addition, the photostability of Mn-CDs is also improved, and show an efficient singlet oxygen (1 O2 ) yield of 1.68. Moreover, Mn-CDs can also perform high-efficiency peroxidase (POD)-like activity and catalyze hydrogen peroxide to hydroxyl radicals, which is greatly improved under the light condition. The results both in vitro and in vivo demonstrate that the Mn-CDs are able to achieve real-time MR imaging of TME responsiveness through aggregation of the enhanced permeability and retention effect at tumor sites and facilitate light-enhanced chemodynamic and photodynamic combination therapies. This work opens a new perspective in terms of the role of carbon nanomaterials in integrated diagnosis and treatment of diseases.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Cloruro de Tolonio , Manganeso , Especies Reactivas de Oxígeno , Carbono , Peróxido de Hidrógeno , Imagen por Resonancia Magnética , Microambiente Tumoral , Línea Celular Tumoral
9.
Adv Sci (Weinh) ; 11(6): e2307844, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38054654

RESUMEN

Iron single-atom nanozymes represent a promising artificial enzyme with superior activity owing to uniform active sites that can precisely mimic active center of nature enzymes. However, current synthetic strategies are hard to guarantee each active site at single-atom state. In this work, an erythrocyte-templated strategy by utilizing intrinsic hemin active center of hemoglobin as sing-atom source for nanozyme formation is developed. By combining cell fixation, porous salinization, and high-temperature carbonization, erythrocytes are successfully served as uniform templates to synthesize nanozymes with fully single-atom FeN4 active sites which derived from hemin of hemoglobin, resulting in an enhanced peroxidase (POD)-like activity. Interestingly, the catalytic activity of erythrocyte-templated nanozyme (ETN) shows dependence on animal species, among which murine ETN performed superior catalytic efficiency. In addition, the as-prepared ETNs display a honeycomb-like network structure, serving as a sponge to accelerate hemostasis based on the interactions with prothrombin and fibrinogen. These features enable ETN to effectively kill methicillin-resistant Staphylococcus aureus (MRSA) by combining POD-like catalysis with near-infrared (NIR) induced photothermal effect, and subsequently suitable to promote wound healing. This study provides a proof-of-concept for facile fabrication of multifunctional nanozymes with uniform single-atom active sites by utilizing intrinsic iron structure characteristics of biogenic source like erythrocytes.


Asunto(s)
Hemina , Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Eritrocitos , Cicatrización de Heridas , Hierro
10.
Nat Commun ; 14(1): 7312, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951992

RESUMEN

Enveloped viruses encased within a lipid bilayer membrane are highly contagious and can cause many infectious diseases like influenza and COVID-19, thus calling for effective prevention and inactivation strategies. Here, we develop a diatomic iron nanozyme with lipoxidase-like (LOX-like) activity for the inactivation of enveloped virus. The diatomic iron sites can destruct the viral envelope via lipid peroxidation, thus displaying non-specific virucidal property. In contrast, natural LOX exhibits low antiviral performance, manifesting the advantage of nanozyme over the natural enzyme. Theoretical studies suggest that the Fe-O-Fe motif can match well the energy levels of Fe2 minority ß-spin d orbitals and pentadiene moiety π* orbitals, and thus significantly lower the activation barrier of cis,cis-1,4-pentadiene moiety in the vesicle membrane. We showcase that the diatomic iron nanozyme can be incorporated into air purifier to disinfect airborne flu virus. The present strategy promises a future application in comprehensive biosecurity control.


Asunto(s)
Alcadienos , Gripe Humana , Virus , Humanos , Antivirales , Lipooxigenasa , Hierro
11.
Nat Commun ; 14(1): 5808, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726302

RESUMEN

Amyloid-like assembly is not only associated with pathological events, but also leads to the development of novel nanomaterials with unique properties. Herein, using Fmoc diphenylalanine peptide (Fmoc-F-F) as a minimalistic model, we found that histidine can modulate the assembly behavior of Fmoc-F-F and induce enzyme-like catalysis. Specifically, the presence of histidine rearranges the ß structure of Fmoc-F-F to assemble nanofilaments, resulting in the formation of active site to mimic peroxidase-like activity that catalyzes ROS generation. A similar catalytic property is also observed in Aß assembled filaments, which is correlated with the spatial proximity between intermolecular histidine and F-F. Notably, the assembled Aß filaments are able to induce cellular ROS elevation and damage neuron cells, providing an insight into the pathological relationship between Aß aggregation and Alzheimer's disease. These findings highlight the potential of histidine as a modulator in amyloid-like assembly of peptide nanomaterials exerting enzyme-like catalysis.


Asunto(s)
Histidina , Nanoestructuras , Especies Reactivas de Oxígeno , Proteínas Amiloidogénicas , Péptidos
12.
J Nanobiotechnology ; 21(1): 281, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598162

RESUMEN

BACKGROUND: Iron sulfide nanomaterials have been successfully employed as therapeutic agents for bacterial infection therapy and catalytic-ferroptosis synergistic tumor therapy due to their unique structures, physiochemical properties, and biocompatibility. However, biomedical research and understanding of the biological functions of iron sulfides are insufficient, and how iron sulfide nanomaterials affect reactive oxygen species (ROS) in diseases remains unknown. Acute kidney injury (AKI) is associated with high levels of ROS, and therefore nanomedicine-mediated antioxidant therapy has emerged as a novel strategy for its alleviation. RESULTS: Here, mackinawite nanozymes were synthesized from glutathione (GSH) and iron ions (Fe3+) (denoted as GFeSNs) using a hydrothermal method, and then evaluated as ROS scavengers for ROS-related AKI treatment. GFeSNs showed broad-spectrum ROS scavenging ability through synergistic interactions of multiple enzymes-like and hydrogen polysulfide-releasing properties. Furthermore, both in vitro and in vivo experiments demonstrated that GFeSNs exhibited outstanding cytoprotective effects against ROS-induced damage at extremely low doses and significantly improved treatment outcomes in AKI. CONCLUSIONS: Given the synergetic antioxidant properties and high biocompatibility, GFeSNs exhibit great potential for the treatment of AKI and other ROS-associated diseases.


Asunto(s)
Lesión Renal Aguda , Antioxidantes , Animales , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Lesión Renal Aguda/tratamiento farmacológico , Hierro , Peces , Glutatión
13.
Adv Sci (Weinh) ; 10(25): e2300988, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37400370

RESUMEN

High levels of reactive oxygen species (ROS) lead to progressive deterioration of mitochondrial function, resulting in tissue degeneration. In this study, ROS accumulation induced nucleus pulposus cells (NPCs) senescence is observed in degenerative human and rat intervertebral disc, suggesting senescence as a new therapeutic target to reverse intervertebral disc degeneration (IVDD). By targeting this, dual-functional greigite nanozyme is successfully constructed, which shows the ability to release abundant polysulfides and presents strong superoxide dismutase and catalase activities, both of which function to scavenge ROS and maintain the tissue at physical redox level. By significantly lowering the ROS level, greigite nanozyme rescues damaged mitochondrial function in IVDD models both in vitro and in vivo, rescues NPCs from senescence and alleviated the inflammatory response. Furthermore, RNA-sequencing reveals ROS-p53-p21 axis is responsible for cellular senescence-induced IVDD. Activation of the axis abolishes greigite nanozyme rescued NPCs senescence phenotype, as well as the alleviated inflammatory response to greigite nanozyme, which confirms the role of ROS-p53-p21 axis in greigite nanozyme's function to reverse IVDD. In conclusion, this study demonstrates that ROS-induced NPCs senescence leads to IVDD and the dual-functional greigite nanozyme holds strong potential to reverse this process, providing a novel strategy for IVDD management.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Ratas , Humanos , Animales , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/uso terapéutico
15.
Adv Sci (Weinh) ; 10(17): e2206869, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37092591

RESUMEN

Influenza virus with numerous subtypes and frequent variation limits the development of high-efficacy and broad-spectrum antiviral strategy. Here, a novel multi-antiviral metastable iron sulfides (mFeS) against various influenza A/B subtype viruses is developed. This work finds that mFeS induces high levels of lipid peroxidation and •OH free radicals in the conservative viral envelope, which depends on Fe2+ . This phenomenon, termed as a viral ferroptosis, results in the loss of viral infectibility and pathogenicity in vitro and in vivo, respectively. Furthermore, the decoction of mFeS (Dc(mFeS)) inhibits cellular ferroptosis-dependent intracellular viral replication by correcting the virus-induced reprogrammed sulfur metabolism, a conserved cellular metabolism. Notably, personal protective equipment (PPE) that is loaded with mFeS provides good antiviral protection. Aerosol administration of mFeS combined with the decoction (mFeS&Dc) has a potential therapeutic effect against H1N1 lethal infection in mice. Collectively, mFeS represents an antiviral alternative with broad-spectrum activity against intracellular and extracellular influenza virus.


Asunto(s)
Ferroptosis , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Animales , Ratones , Virus de la Influenza A/fisiología , Antivirales/farmacología , Antivirales/uso terapéutico
16.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050473

RESUMEN

The nanozyme-strip is a novel POCT technology which is different from the conventional colloidal gold strip. It primarily utilizes the catalytic activity of nanozyme to achieve a high-sensitivity detection of target by amplifying the detection signal. However, previous research has chiefly focused on optimizing nanozyme-strip from the perspective of increasing nanozyme activity, little is known about other physicochemical factors. In this work, three sizes of Fe3O4 nanozyme and three sizes of CoFe2O4 nanozyme were used to investigate the key factors of nanozyme-strip for optimizing and improving its detection performance. We found that three sizes of Fe3O4 nanozyme all gather at the bottom of the nitrocellulose (NC) membrane, and three sizes of CoFe2O4 nanozyme migrate smoothly on the NC membrane, respectively. After color development, the surface of NC membranes distributed with CoFe2O4 peroxidase nanozymes had significant color change. Experimental results show that CoFe2O4 nanozymes had better dispersity than Fe3O4 nanozymes in an aqueous solution. We observed that CoFe2O4 nanozymes with smaller particle size migrated to the middle of the NC membrane with a higher number of particles. According to the results above, 55 ± 6 nm CoFe2O4 nanozyme was selected to prepare the nanozyme probe and achieved a highly sensitive detection of Aß42Os on the nanozyme-strip. These results suggest that nanozyme should be comprehensively evaluated in its dispersity, the migration on NC membrane, and the peroxidase-like activity to determine whether it can be applied to nanozyme-strip.


Asunto(s)
Peroxidasa , Peroxidasas , Colorantes
17.
J Am Chem Soc ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744911

RESUMEN

How to optimize the enzyme-like catalytic activity of nanozymes to improve their applicability has become a great challenge. Herein, we present an l-cysteine (l-Cys) coordination-driven self-assembly strategy to activate polyvinylpyrrolidone (PVP)-modified Cu single-atom nanozymes MoOx-Cu-Cys (denoted as MCCP SAzymes) aiming at catalytic tumor-specific therapy. The Cu single atom content of MCCP can be rationally modulated to 10.10 wt %, which activates the catalase (CAT)-like activity of MoOx nanoparticles to catalyze the decomposition of H2O2 in acidic microenvironments to increase O2 production. Excitingly, the maximized CAT-like catalytic efficiency of MCCP is 138-fold higher than that of typical MnO2 nanozymes and exhibits 14.3-fold higher affinity than natural catalase, as demonstrated by steady-state kinetics. We verify that the well-defined l-Cys-Cu···O active sites optimize CAT-like activity to match the active sites of natural catalase through an l-Cys bridge-accelerated electron transfer from Cys-Cu to MoOx disclosed by density functional theory calculations. Simultaneously, the high loading Cu single atoms in MCCP also enable generation of •OH via a Fenton-like reaction. Moreover, under X-ray irradiation, MCCP converts O2 to 1O2 for cascading radiodynamic therapy, thereby facilitating the multiple reactive oxygen species (ROS) for radiosensitization to achieve substantial antitumor.

18.
Biomater Adv ; 144: 213207, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36446252

RESUMEN

Due to their antibacterial activity, sulfur-containing nanomaterials are increasingly being developed into nanodrugs against bacterial infection. Nano iron sulfide (nFeS) is a new nanomaterial that can convert organic sulfur into inorganic sulfur, which has excellent antibacterial activity. However, the inorganic sulfur produced by nFeS can easily change its form or volatilize in aqueous solution, which may affect the efficacy of nFeS. We propose a new strategy to encapsulate nFeS in a hydrogel to preserve inorganic sulfides, and the macroporous structure of the hydrogel can capture bacteria to increase their interaction with nFeS. The in-depth characterization conducted in this study demonstrate that the water swelling characteristics of the lyophilized nFeS-Hydrogel and the ability to effectively maintain the antibacterial active ingredients in nFeS results in more effective killing of harmful bacteria than pure nFeS, while also prolonging the shelf life of antibacterial activity. We discovered that bacteria exhibit a unique mode of cell death when nFeS contained in hydrogels interacts with the cells by producing hydrogen polysulfanes, which increased intracellular ROS levels and reduced GSH levels. Furthermore, the nFeS-Hydrogel was found to reduce inflammation and exhibited excellent biocompatibility. Accordingly, the nFeS-Hydrogel has great application prospects as a fast excipient for clearing infection, reducing inflammation, and accelerating wound healing.


Asunto(s)
Bacterias , Hidrogeles , Humanos , Hidrogeles/farmacología , Antibacterianos/farmacología , Azufre/farmacología , Cicatrización de Heridas , Inflamación/tratamiento farmacológico
19.
Adv Mater ; : e2206421, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329676

RESUMEN

The development of cold-adapted enzymes with high efficiency and good stability is an advanced strategy to overcome the limitations of catalytic medicine in low and cryogenic temperatures. In this work, inspired by natural enzymes, a novel cold-adapted nanozyme based on a manganese-based nanosized metal-organic framework (nMnBTC) is designed and synthesized. The nMnBTC as an oxidase mimetic not only exhibits excellent activity at 0 °C, but also presents almost no observable activity loss as the temperature is increased to 45 °C. This breaks the traditional recognition that enzymes show maximum activity only under specific psychrophilic or thermophilic condition. The superior performance of nMnBTC as a cold-adapted nanozyme can be attributed to its high-catalytic efficiency at low temperature, good substrate affinity, and flexible conformation. Based on the robust performance of nMnBTC, a low-temperature antiviral strategy is developed to inactivate influenza virus H1N1 even at -20 °C. These results not only provide an important guide for the rational design of highly efficient artificial cold-adapted enzymes, but also pave a novel way for biomedical application in cryogenic fields.

20.
Biosens Bioelectron ; 217: 114739, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36155953

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has created a huge demand for sensitive and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current gold standard for SARS-CoV-2 detection is reverse transcription-polymerase chain reaction (RT-PCR)-based nucleic acid amplification. However, RT-PCR is time consuming and requires specialists and large instruments that are unattainable for point-of-care testing (POCT). To develop POCT for SARS-CoV-2, we combined recombinase polymerase amplification (RPA) and FeS2 nanozyme strips to achieve facile nucleic acid amplification and subsequent colorimetric signal enhancement based on the high peroxidase-like activity of the FeS2 nanozymes. This method showed a nucleic acid limit of detection (LOD) for SARS-CoV-2 of 200 copies/mL, close to that of RT-PCR. The unique catalytic properties of the FeS2 nanozymes enabled the nanozyme-strip to amplify colorimetric signals via the nontoxic 3,3',5,5'-tetramethylbenzidine (TMB) substrate. Importantly, the detection of clinical samples of human papilloma virus type 16 (HPV-16) showed 100% agreement with previous RT-PCR results, highlighting the versatility and reliability of this method. Our findings suggest that nanozyme-based nucleic acid detection has great potential in the development of POCT diagnosis for COVID-19 and other viral infections.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Peroxidasas , ARN Viral/análisis , ARN Viral/genética , Recombinasas , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...