Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 87(19): 13138-13153, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36166815

RESUMEN

Electrochemical synthesis of polysubstituted sulfonated pyrazoles from enaminones and sulfonyl hydrazides was established under metal-free, exogenous-oxidant-free, and mild conditions. By judicious choice of different electrochemical reaction conditions, NH2-functionalized enaminones or N,N-disubstituted enaminones can react with aryl/alkyl sulfonyl hydrazides to afford tetra- or trisubstituted sulfonated pyrazoles in moderate to good yields, respectively. The gram-scale electrochemical transformation demonstrated the efficiency and practicability of this synthetic strategy. In addition, the sulfonated NH-pyrazole can be obtained via the dissociation of the N-tosyl group. Mechanistic studies reveal that the electrochemical cascade reaction synthesis of polysubstituted sulfonated pyrazoles proceeded via the sequence of intermolecular condensation, radical-radical cross coupling sulfonylation, and pyrazole annulation.

2.
J Org Chem ; 86(4): 3422-3432, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33512164

RESUMEN

The cycloadditions of carbon dioxide into epoxides to afford cyclic carbonates by H-bond donor (HBD) and onium halide (X) cocatalysis have emerged as a key strategy for CO2 fixation. However, if the HBD is also a halide receptor, the two will quench each other, decreasing the catalytic activity. Here, we propose a strained ion pair tris(alkylamino)cyclopropenium halide (TAC·X), in which TAC repels X. TAC possesses a positively charged cyclopropenium core that makes the vicinal C-H or N-H a nonclassical HBD. The interionic strain within TAC·X makes TAC a more electrophilic HBD, allowing it to activate the oxygen of the epoxide and making X more nucleophilic and better able to attack the methylene carbon of the epoxide. NMR titration spectra and computational studies were employed to probe the mechanism of the cycloaddition of CO2 to epoxides reactions under the catalysis of TAC·X. The 1H and 13C{1H}NMR titration spectra of the catalyst with the epoxide substrate unambiguously confirmed H-bonding between TAC and the epoxide. DFT computational studies identified the transition states in the ring-opening of the epoxide (TS1) and in the ring-closure of the cyclic carbonate (TS2).

3.
Org Lett ; 23(1): 183-189, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33336577

RESUMEN

Here, we report an unprecedented regioselective, intermolecular 1,2-cyanoalkylacylation of feedstock alkenes with readily available oxime esters and aldehydes by N-heterocyclic carbene (NHC) organocatalysis. The crux of this success is the exquisite control over the radical relay process by an NHC organocatalyst. This protocol offers a general platform for diversity-oriented synthesis of valuable ketonitriles under mild, transition-metal-free, and redox-neutral conditions and highlights its potential in the late-stage functionalization of pharmaceutical architectures and natural products.

4.
ChemSusChem ; 14(2): 738-744, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33210437

RESUMEN

Halogen bonding, parallel to hydrogen bonding, was introduced into the catalytic cycloaddition of carbon dioxide into epoxide (CCE) reactions. A series of halogen-bond donor (XBD) catalysts of N-iodopyridinium halide featured with N-I bond were synthesized and evaluated in CCE reactions. The optimal XBD catalyst, 4-(dimethylamino)-N-iodopyridinium bromide ([DMAPI]Br), under screened conditions at 100 °C, ambient pressure, and 1 mol % catalyst loading, realized 93 % conversion of styrene oxide into cyclic carbonate in 6 h. The substrate scope was successfully extended with excellent yields (mostly ≥93 %) and quantitative selectivity (more than 99 %). 1 H NMR spectroscopy of the catalyst [DMAPI]Br on substrate epoxide certified that the N-I bond directly coordinated with the epoxide oxygen. A plausible mechanism of halogen-bonding catalysis was proposed, in which the DMAPI cation functioned as halogen-bond donor to activate the epoxide, and the counter anion bromide attacked the methylene carbon to initiate the ring-opening of the epoxide. CCE reactions promoted by N-iodopyridinium halide, exemplify a first case of halogen-bonding catalysis in epoxide activation and CO2 transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...