Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proteins ; 92(7): 830-841, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38372168

RESUMEN

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Multimerización de Proteína , Ubiquitina-Proteína Ligasas , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Cristalografía por Rayos X , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Modelos Moleculares , Humanos , Dominios Proteicos , Pliegue de Proteína , Secuencia de Aminoácidos , Conformación Proteica en Lámina beta
2.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293217

RESUMEN

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.

3.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260573

RESUMEN

All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication and pathogenesis.

4.
Proteins ; 92(4): 554-566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38041394

RESUMEN

NADH cytochrome b5 oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b5 (b5 ) and cytochrome b5 reductase (b5 R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme. While full-length human Ncb5or has proven resistant to crystallization, we have succeeded in obtaining high-resolution atomic structures of the b5 domain and a construct containing the CS and b5 R domains (CS/b5 R). Ncb5or also contains an N-terminal intrinsically disordered region of 50 residues that has no homologs in other protein families in animals but features a distinctive, conserved L34 MDWIRL40 motif also present in reduced lateral root formation (RLF) protein in rice and increased recombination center 21 in baker's yeast, all attaching to a b5 domain. After unsuccessful attempts at crystallizing a human Ncb5or construct comprising the N-terminal region naturally fused to the b5 domain, we were able to obtain a high-resolution atomic structure of a recombinant rice RLF construct corresponding to residues 25-129 of human Ncb5or (52% sequence identity; 74% similarity). The structure reveals Trp120 (corresponding to invariant Trp37 in Ncb5or) to be part of an 11-residue α-helix (S116 QMDWLKLTRT126 ) packing against two of the four helices in the b5 domain that surround heme (α2 and α5). The Trp120 side chain forms a network of interactions with the side chains of four highly conserved residues corresponding to Tyr85 and Tyr88 (α2), Cys124 (α5), and Leu47 in Ncb5or. Circular dichroism measurements of human Ncb5or fragments further support a key role of Trp37 in nucleating the formation of the N-terminal helix, whose location in the N/b5 module suggests a role in regulating the function of this multi-domain redox enzyme. This study revealed for the first time an ancient origin of a helical motif in the N/b5 module as reflected by its existence in a class of cytochrome b5 proteins from three kingdoms among eukaryotes.


Asunto(s)
Citocromos b , NAD , Animales , Humanos , Citocromo-B(5) Reductasa/química , Oxidorreductasas , Hemo/química
5.
Res Sq ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546914

RESUMEN

Visceral leishmaniasis, caused by Leishmania donovani, is a life-threatening parasitic disease, but current antileishmanial drugs are limited and have severe drawbacks. There have been efforts to repurpose antifungal azole drugs for the treatment of Leishmania infection. Antifungal azoles are known to potently inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets for these compounds. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation reactions to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. Overexpression of CYP5122A1 results in growth delay, differentiation defects, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1, e.g., clotrimazole and posaconazole, possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors, e.g., fluconazole and voriconazole, have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.

6.
ACS Cent Sci ; 8(10): 1424-1434, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36313155

RESUMEN

Small-molecule drug target identification is an essential and often rate-limiting step in phenotypic drug discovery and remains a major challenge. Here, we report a novel platform for target identification of activators of signaling pathways by leveraging the power of a clustered regularly interspaced short palindromic repeats (CRISPR) knockout library. This platform links the expression of a suicide gene to the small-molecule-activated signaling pathway to create a selection system. With this system, loss-of-function screening using a CRISPR single-guide (sg) RNA library positively enriches cells in which the target has been knocked out. The identities of the drug targets and other essential genes required for the activity of small molecules of interest are then uncovered by sequencing. We tested this platform on BDW568, a newly discovered type-I interferon signaling activator, and identified stimulator of interferon genes (STING) as its target and carboxylesterase 1 (CES1) to be a key metabolizing enzyme required to activate BDW568 for target engagement. The platform we present here can be a general method applicable for target identification for a wide range of small molecules that activate different signaling pathways.

7.
Anal Biochem ; 634: 114425, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678250

RESUMEN

Therapeutic proteins (TPs) are exposed to various immune cells like macrophages and neutrophils, especially after subcutaneous (SC) administration. It is well known that the immune cells can generate reactive oxygen species (ROS) and this may lead to oxidation of TPs. The oxidation can occur in the SC tissue after SC administration, during distribution to the immune organs like lymph nodes and spleen, and even in the blood circulation. The oxidation can lead to alteration of their pharmacokinetics and efficacy. Therefore, it is important to study the oxidation of TPs in the biological matrices using ultra-pressure chromatography-mass spectrometry. Rat growth hormone (rGH) was selected as a test protein due to its similarity with human growth hormone (hGH), which is widely used for treatment of growth hormone deficiency. In this manuscript, we have summarized sample processing strategy and ultra-pressure chromatography-mass spectrometry methodology to identify rGH and its degradation products after ex-vivo incubation with rat SC tissue, and in vitro incubation with rat splenocytes and canine peripheral blood mononuclear cells (cPBMCs) as a model foreign host species. We did not observe oxidation of rGH in these biological matrices. This could be due to very minor yields of oxidation products, lack of sensitivity of the mass spectrometry method, loss of protein during sample processing, rapid turnover of oxidized protein or a combination of all factors.


Asunto(s)
Hormona del Crecimiento/farmacología , Leucocitos Mononucleares/metabolismo , Tejido Subcutáneo/metabolismo , Animales , Cromatografía/métodos , Perros , Hormona del Crecimiento/administración & dosificación , Hormona del Crecimiento/farmacocinética , Hormona de Crecimiento Humana/farmacología , Humanos , Sistema Inmunológico/metabolismo , Inyecciones Subcutáneas , Masculino , Espectrometría de Masas/métodos , Oxidación-Reducción , Ratas , Especies Reactivas de Oxígeno/metabolismo , Bazo/metabolismo
8.
Nucleic Acids Res ; 49(14): 7870-7883, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34283224

RESUMEN

Risdiplam is the first approved small-molecule splicing modulator for the treatment of spinal muscular atrophy (SMA). Previous studies demonstrated that risdiplam analogues have two separate binding sites in exon 7 of the SMN2 pre-mRNA: (i) the 5'-splice site and (ii) an upstream purine (GA)-rich binding site. Importantly, the sequence of this GA-rich binding site significantly enhanced the potency of risdiplam analogues. In this report, we unambiguously determined that a known risdiplam analogue, SMN-C2, binds to single-stranded GA-rich RNA in a sequence-specific manner. The minimum required binding sequence for SMN-C2 was identified as GAAGGAAGG. We performed all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method, which captured spontaneous binding of a risdiplam analogue to the target nucleic acids. We uncovered, for the first time, a ligand-binding pocket formed by two sequential GAAG loop-like structures. The simulation findings were highly consistent with experimental data obtained from saturation transfer difference (STD) NMR and structure-affinity-relationship studies of the risdiplam analogues. Together, these studies illuminate us to understand the molecular basis of single-stranded purine-rich RNA recognition by small-molecule splicing modulators with an unprecedented binding mode.


Asunto(s)
Compuestos Azo/metabolismo , Atrofia Muscular Espinal/genética , Pirimidinas/metabolismo , Precursores del ARN/genética , Empalme del ARN , Compuestos Azo/química , Compuestos Azo/uso terapéutico , Secuencia de Bases , Sitios de Unión/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Exones/genética , Cinética , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Estructura Molecular , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/metabolismo , Mutación , Fármacos Neuromusculares/química , Fármacos Neuromusculares/metabolismo , Fármacos Neuromusculares/uso terapéutico , Conformación de Ácido Nucleico , Pirimidinas/química , Pirimidinas/uso terapéutico , Precursores del ARN/química , Precursores del ARN/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética
9.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33158944

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) Mac1 domains exhibit similar structural folds, and all 3 proteins bound to ADP-ribose with affinities in the low micromolar range. Importantly, using ADP-ribose-detecting binding reagents in both a gel-based assay and novel enzyme-linked immunosorbent assays (ELISAs), we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate than the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity.IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic posttranslational process that is increasingly being recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose and describe its ADP-ribose binding and hydrolysis activities in direct comparison to those of SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.


Asunto(s)
N-Glicosil Hidrolasas/metabolismo , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/metabolismo , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Coronavirus/química , Coronavirus/enzimología , Coronavirus/metabolismo , Cristalografía por Rayos X , Humanos , Hidrólisis , Cinética , N-Glicosil Hidrolasas/química , Unión Proteica , Dominios Proteicos , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/química
10.
bioRxiv ; 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32511412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like-CoVs encode 3 tandem macrodomains within non-structural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs, and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated anti-viral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV and MERS-CoV Mac1 exhibit similar structural folds and all 3 proteins bound to ADP-ribose with low µM affinities. Importantly, using ADP-ribose detecting binding reagents in both a gel-based assay and novel ELISA assays, we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate compared to the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity. IMPORTANCE: SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused greater than 900 thousand deaths worldwide. With, no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode for a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic post-translational process increasingly recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose, and describe its ADP-ribose binding and hydrolysis activities in direct comparison to SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.

11.
Proteins ; 88(4): 573-583, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31603583

RESUMEN

Musashi-2 (MSI2) belongs to Musashi family of RNA binding proteins (RBP). Like Musashi-1 (MSI1), it is overexpressed in a variety of cancers and is a promising therapeutic target. Both MSI proteins contain two N-terminal RNA recognition motifs and play roles in posttranscriptional regulation of target mRNAs. Previously, we have identified several inhibitors of MSI1, all of which bind to MSI2 as well. In order to design MSI2-specific inhibitors and compare the differences of binding mode of the inhibitors, we set out to solve the structure of MSI2-RRM1, the key motif that is responsible for the binding. Here, we report the crystal structure and the first NMR solution structure of MSI2-RRM1, and compare these to the structures of MSI1-RBD1 and other RBPs. A high degree of structural similarity was observed between the crystal and solution NMR structures. MSI2-RRM1 shows a highly similar overall folding topology to MSI1-RBD1 and other RBPs. The structural information of MSI2-RRM1 will be helpful for understanding MSI2-RNA interaction and for guiding rational drug design of MSI2-specific inhibitors.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas Oncogénicas/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Motivo de Reconocimiento de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica
12.
Acta Crystallogr D Struct Biol ; 75(Pt 7): 628-638, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31282472

RESUMEN

Ncb5or (NADH-cytochrome b5 oxidoreductase), a cytosolic ferric reductase implicated in diabetes and neurological diseases, comprises three distinct domains, cytochrome b5 (b5) and cytochrome b5 reductase (b5R) domains separated by a CHORD-Sgt1 (CS) domain, and a novel 50-residue N-terminal region. Understanding how interdomain interactions in Ncb5or facilitate the shuttling of electrons from NAD(P)H to heme, and how the process compares with the microsomal b5 (Cyb5A) and b5R (Cyb5R3) system, is of interest. A high-resolution structure of the b5 domain (PDB entry 3lf5) has previously been reported, which exhibits substantial differences in comparison to Cyb5A. The structural characterization of a construct comprising the naturally fused CS and b5R domains with bound FAD and NAD+ (PDB entry 6mv1) or NADP+ (PDB entry 6mv2) is now reported. The structures reveal that the linker between the CS and b5R cores is more ordered than predicted, with much of it extending the ß-sandwich motif of the CS domain. This limits the flexibility between the two domains, which recognize one another via a short ß-sheet motif and a network of conserved side-chain hydrogen bonds, salt bridges and cation-π interactions. Notable differences in FAD-protein interactions in Ncb5or and Cyb5R3 provide insight into the selectivity for docking of their respective b5 redox partners. The structures also afford a structural explanation for the unusual ability of Ncb5or to utilize both NADH and NADPH, and represent the first examples of native, fully oxidized b5R family members in which the nicotinamide ring of NAD(P)+ resides in the active site. Finally, the structures, together with sequence alignments, show that the b5R domain is more closely related to single-domain Cyb5R proteins from plants, fungi and some protists than to Cyb5R3 from animals.


Asunto(s)
Citocromo-B(5) Reductasa/química , Citocromos b5/química , NADP/química , Proteínas Portadoras/química , Dominio Catalítico , Cristalización , Hemo/química , Humanos , Enlace de Hidrógeno , Cinética , Proteínas de la Membrana/química , Modelos Moleculares , Complejos Multiproteicos , NAD/química , Oxidación-Reducción , Proteínas de Unión a Fosfato , Conformación Proteica en Lámina beta , Dominios Proteicos , Proteínas Recombinantes/química
13.
BMC Cancer ; 18(1): 809, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097032

RESUMEN

BACKGROUND: The Musashi (MSI) family of RNA-binding proteins is best known for the role in post-transcriptional regulation of target mRNAs. Elevated MSI1 levels in a variety of human cancer are associated with up-regulation of Notch/Wnt signaling. MSI1 binds to and negatively regulates translation of Numb and APC (adenomatous polyposis coli), negative regulators of Notch and Wnt signaling respectively. METHODS: Previously, we have shown that the natural product (-)-gossypol as the first known small molecule inhibitor of MSI1 that down-regulates Notch/Wnt signaling and inhibits tumor xenograft growth in vivo. Using a fluorescence polarization (FP) competition assay, we identified gossypolone (Gn) with a > 20-fold increase in Ki value compared to (-)-gossypol. We validated Gn binding to MSI1 using surface plasmon resonance, nuclear magnetic resonance, and cellular thermal shift assay, and tested the effects of Gn on colon cancer cells and colon cancer DLD-1 xenografts in nude mice. RESULTS: In colon cancer cells, Gn reduced Notch/Wnt signaling and induced apoptosis. Compared to (-)-gossypol, the same concentration of Gn is less active in all the cell assays tested. To increase Gn bioavailability, we used PEGylated liposomes in our in vivo studies. Gn-lip via tail vein injection inhibited the growth of human colon cancer DLD-1 xenografts in nude mice, as compared to the untreated control (P < 0.01, n = 10). CONCLUSION: Our data suggest that PEGylation improved the bioavailability of Gn as well as achieved tumor-targeted delivery and controlled release of Gn, which enhanced its overall biocompatibility and drug efficacy in vivo. This provides proof of concept for the development of Gn-lip as a molecular therapy for colon cancer with MSI1/MSI2 overexpression.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Gosipol/análogos & derivados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Productos Biológicos/administración & dosificación , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Gosipol/administración & dosificación , Humanos , Liposomas/administración & dosificación , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Oncotarget ; 8(31): 51355-51369, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881653

RESUMEN

Anti-apoptotic proteins Bcl-2 and Bcl-xL could block autophagy by binding to Beclin 1 protein, an essential inducer of autophagy. Compounds mimicking Beclin 1 might be able to disrupt Bcl-xL/2-Beclin 1 interaction, free out Beclin 1, and thus trigger autophagy. In order to identify small molecule Beclin 1 mimetics, a fluorescence polarization-based high-throughput screening of 50,316 compounds was carried out with a Z' score of 0.82 ± 0.05, and an outcome of 58 hits. After the structure analysis, three acridine analogues were unveiled and confirmed using the fluorescence polarization assay and the surface plasmon resonance assay. Moreover, a set of 17 additional acridine analogues was prepared and tested. Compound 7 showed selectivity for Bcl-xL (KD = 6.5 µM) over Bcl-2 (KD = 160 µM) protein, and potent cytotoxicity (nanomolar scale) in PC-3, PC-3a and DU145 prostate cancer cells. Furthermore, induction of autophagy was also demonstrated in PC-3 and PC-3a cells treated with some acridine compounds by LC3 conversion immunoblotting and LC3 fluorescence microscopy. These Beclin 1 mimetics will be invaluable tools for developing novel autophagy inducers, better understanding the roles of autophagy in cancer, and will contribute to cancer therapy.

15.
Cell Rep ; 18(11): 2651-2663, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28297669

RESUMEN

During eukaryotic translation initiation, eIF3 binds the solvent-accessible side of the 40S ribosome and recruits the gate-keeper protein eIF1 and eIF5 to the decoding center. This is largely mediated by the N-terminal domain (NTD) of eIF3c, which can be divided into three parts: 3c0, 3c1, and 3c2. The N-terminal part, 3c0, binds eIF5 strongly but only weakly to the ribosome-binding surface of eIF1, whereas 3c1 and 3c2 form a stoichiometric complex with eIF1. 3c1 contacts eIF1 through Arg-53 and Leu-96, while 3c2 faces 40S protein uS15/S13, to anchor eIF1 to the scanning pre-initiation complex (PIC). We propose that the 3c0:eIF1 interaction diminishes eIF1 binding to the 40S, whereas 3c0:eIF5 interaction stabilizes the scanning PIC by precluding this inhibitory interaction. Upon start codon recognition, interactions involving eIF5, and ultimately 3c0:eIF1 association, facilitate eIF1 release. Our results reveal intricate molecular interactions within the PIC, programmed for rapid scanning-arrest at the start codon.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Factor 1 Eucariótico de Iniciación/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación/genética , Unión Proteica , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Oncotarget ; 8(63): 106587-106597, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29290973

RESUMEN

RNA-binding protein Musashi-2 (MSI2) is a key regulator in stem cells, it is over-expressed in a variety of cancers and its higher expression is associated with poor prognosis. Like Musashi-1, it contains two N-terminal RRMs (RNA-recognition Motifs, also called RBDs (RNA-binding Domains)), RRM1 and RRM2, which mediate the binding to their target mRNAs. Previous studies have obtained the three-dimensional structures of the RBDs of Musashi-1 and the RBD1:RNA complex. Here we show the binding of MSI2-RRM1 to a 15nt Numb RNA in Fluorescence Polarization assay and time resolved Fluorescence Resonance Energy Transfer assay. Using nuclear magnetic resonance (NMR) spectroscopy we assigned the backbone resonances of MSI2-RRM1, and characterized the direct interaction of RRM1 to Numb RNA r(GUAGU). Our NMR titration and structure modeling studies showed that MSI2-RRM1 and MSI1-RBD1 have similar RNA binding events and binding pockets. This work adds significant information to MSI2-RRM1 structure and RNA binding pocket, and contributes to the development of MSI2 specific and MSI1/MSI2 dual inhibitors.

17.
J Biol Chem ; 290(38): 23447-63, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26205819

RESUMEN

Dye-decolorizing peroxidases (DyPs) comprise a new family of heme peroxidases, which has received much attention due to their potential applications in lignin degradation. A new DyP from Thermomonospora curvata (TcDyP) was identified and characterized. Unlike other A-type enzymes, TcDyP is highly active toward a wide range of substrates including model lignin compounds, in which the catalytic efficiency with ABTS (kcat(app)/Km(app) = (1.7 × 10(7)) m(-1) s(-1)) is close to that of fungal DyPs. Stopped-flow spectroscopy was employed to elucidate the transient intermediates as well as the catalytic cycle involving wild-type (wt) and mutant TcDyPs. Although residues Asp(220) and Arg(327) are found necessary for compound I formation, His(312) is proposed to play roles in compound II reduction. Transient kinetics of hydroquinone (HQ) oxidation by wt-TcDyP showed that conversion of the compound II to resting state is a rate-limiting step, which will explain the contradictory observation made with the aspartate mutants of A-type DyPs. Moreover, replacement of His(312) and Arg(327) has significant effects on the oligomerization and redox potential (E°') of the enzyme. Both mutants were found to promote the formation of dimeric state and to shift E°' to a more negative potential. Not only do these results reveal the unique catalytic property of the A-type DyPs, but they will also facilitate the development of these enzymes as lignin degraders.


Asunto(s)
Actinobacteria/enzimología , Lignina/química , Modelos Químicos , Peroxidasa/química , Multimerización de Proteína , Proteínas Bacterianas , Catálisis , Cinética , Oxidación-Reducción
18.
Mol Oncol ; 9(7): 1406-20, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25933687

RESUMEN

Musashi-1 (MSI1) is an RNA-binding protein that acts as a translation activator or repressor of target mRNAs. The best-characterized MSI1 target is Numb mRNA, whose encoded protein negatively regulates Notch signaling. Additional MSI1 targets include the mRNAs for the tumor suppressor protein APC that regulates Wnt signaling and the cyclin-dependent kinase inhibitor P21(WAF-1). We hypothesized that increased expression of NUMB, P21 and APC, through inhibition of MSI1 RNA-binding activity might be an effective way to simultaneously downregulate Wnt and Notch signaling, thus blocking the growth of a broad range of cancer cells. We used a fluorescence polarization assay to screen for small molecules that disrupt the binding of MSI1 to its consensus RNA binding site. One of the top hits was (-)-gossypol (Ki = 476 ± 273 nM), a natural product from cottonseed, known to have potent anti-tumor activity and which has recently completed Phase IIb clinical trials for prostate cancer. Surface plasmon resonance and nuclear magnetic resonance studies demonstrate a direct interaction of (-)-gossypol with the RNA binding pocket of MSI1. We further showed that (-)-gossypol reduces Notch/Wnt signaling in several colon cancer cell lines having high levels of MSI1, with reduced SURVIVIN expression and increased apoptosis/autophagy. Finally, we showed that orally administered (-)-gossypol inhibits colon cancer growth in a mouse xenograft model. Our study identifies (-)-gossypol as a potential small molecule inhibitor of MSI1-RNA interaction, and suggests that inhibition of MSI1's RNA binding activity may be an effective anti-cancer strategy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Gosipol/farmacología , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas de Unión al ARN/efectos de los fármacos , Animales , Línea Celular , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
ACS Chem Biol ; 10(6): 1476-84, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25750985

RESUMEN

HuR, an RNA binding protein, binds to adenine- and uridine-rich elements (ARE) in the 3'-untranslated region (UTR) of target mRNAs, regulating their stability and translation. HuR is highly abundant in many types of cancer, and it promotes tumorigenesis by interacting with cancer-associated mRNAs, which encode proteins that are implicated in different tumor processes including cell proliferation, cell survival, angiogenesis, invasion, and metastasis. Drugs that disrupt the stabilizing effect of HuR upon mRNA targets could have dramatic effects on inhibiting cancer growth and persistence. In order to identify small molecules that directly disrupt the HuR-ARE interaction, we established a fluorescence polarization (FP) assay optimized for high throughput screening (HTS) using HuR protein and an ARE oligo from Musashi RNA-binding protein 1 (Msi1) mRNA, a HuR target. Following the performance of an HTS of ∼6000 compounds, we discovered a cluster of potential disruptors, which were then validated by AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay), surface plasmon resonance (SPR), ribonucleoprotein immunoprecipitation (RNP IP) assay, and luciferase reporter functional studies. These compounds disrupted HuR-ARE interactions at the nanomolar level and blocked HuR function by competitive binding to HuR. These results support future studies toward chemical probes for a HuR function study and possibly a novel therapy for HuR-overexpressing cancers.


Asunto(s)
Proteína 1 Similar a ELAV/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , ARN Mensajero/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Elementos de Respuesta/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Sitios de Unión/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Células HCT116 , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunoprecipitación , Luciferasas/genética , Luciferasas/metabolismo , Sondas Moleculares/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Resonancia por Plasmón de Superficie
20.
Biophys J ; 94(2): 434-45, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17827230

RESUMEN

Influenza A virus M2 protein is known to form acid-activated, proton-selective, amantadine-sensitive channels. We directly measured proton uptake in vesicles containing reconstituted M2 by monitoring external pH after addition of valinomycin to vesicles with 100-fold-diluted external [K(+)]. External pH typically increased by a few tenths of a pH unit over a few minutes after valinomycin addition, but proton uptake was not significantly altered by acidification. Under neutral conditions, external addition of 1 mM amantadine produced a reduction in flux consistent with randomly ordered channels; however, experimental variation is high with this method and the block was not statistically significant. Amantadine block was reduced at pH 5.4. In accord with Lin and Schroeder's study of reconstituted M2 using a pH-sensitive dye to monitor intravesicular pH, we conclude that bath pH weakly affects or does not significantly affect proton flow in the pH range 5.4-7.0 for the reconstituted system, contrary to results from electrophysiological studies. Theoretical analysis of the relaxation to Donnan equilibrium utilized for such vesicle uptake assays illuminates the appropriate timescale of the initial slope and an important limitation that must be placed on inferences about channel ion selectivity. The rise in pH over 10 s after ionophore addition yielded time-averaged single-channel conductances of 0.35 +/- 0.20 aS and 0.72 +/- 0.42 aS at pH 5.4 and 7.0, respectively, an order of magnitude lower than previously reported in vesicles. Assuming complete membrane incorporation and tetramerization of the reconstituted protein, such a low time-averaged conductance in the face of previously observed single-channel conductance (6 pS at pH 3) implies an open channel probability of 10(-6)-10(-4). Based on leakage of potassium from M2-containing vesicles, compared to protein-free vesicles, we conclude that M2 exhibits approximately 10(7) selectivity for hydrogen over potassium.


Asunto(s)
Liposomas/metabolismo , Protones , Proteínas de la Matriz Viral/metabolismo , Conductividad Eléctrica , Electroforesis en Gel de Poliacrilamida , Gramicidina/farmacología , Concentración de Iones de Hidrógeno , Transporte Iónico/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...