Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.366
Filtrar
1.
Sci Total Environ ; 932: 173067, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723964

RESUMEN

Optimizing N application under straw-covered strip tillage is of great significance to the rational utilization of stover resources as well as ensure food and ecosystem security, and especially N2O emissions from agricultural systems. Quantifying N2O emissions and even the carbon footprint (CF) from agricultural systems is crucial for future protecting agricultural production systems. A two-year field experiment was conducted on black soil in Northeast China, which set up two tillage systems: strip tillage with straw returning (ST) and conventional tillage (control: CT) without straw and three nitrogen rates: 0, farmers' practice (Nfp 240 kg hm-2), and optimized nitrogen fertilizer (Nopt 180 kg hm-2). We examined the characteristics of N2O emissions and CF under the ST and CT systems. Among them, we indirectly calculated GHG emissions using the LCA method. Compared with CT, the ST system significantly reduces indirect GHG emissions, but did significantly increase direct cumulative N2O emissions by 20.7 %, most likely because the higher soil residual nitrate nitrogen content, WFPS, and soil temperature under ST was 13.0 %, 2 % and 5.7 % higher than that under CT. Nopt treatment markedly reduced cumulative N2O emissions by 36.0 %, CFarea, CFyield, and CFNPV by 22.4 %, 23.1 %, and 23.5 % in ST, respectively, compared to Nfp. The reduction in energy use of machinery in ST results in lower fuel consumption and thus generating less CF. What's more, the decrease of CFyield and CFNPV between nitrogen application treatments under ST was 5.2 % and 7.7 % higher than CT, respectively. ST system can effectively achieve higher grain yield and mitigate GHG emissions on black soil in Northeast China compared with CT, but attention should be paid to N2O emissions in the soil during the maize growth period. The sustainability of balancing GHG emissions, and economic and environmental benefits can be achieved by optimizing nitrogen fertilizer manage.

2.
Mar Pollut Bull ; 203: 116479, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744049

RESUMEN

Terrestrial ecosystems can benefit from environmental protection policies; however, their impact on marine ecological efficiency deserves further exploration. This study uses China's Ecological Civilization Pilot Zone (ECZ) policy as an example of a quasi-natural experimental study, with data from 11 coastal provinces in China from 2006 to 2019 as the initial sample. First, a Super-SBM model considers undesired outputs to measure marine eco-efficiency, while a synthetic control method (SCM) investigates the effect of environmental regulations on marine eco-efficiency. The results show that ECZ policies can promote marine eco-efficiency and the effect mechanisms of these policies are discussed from national and regional perspectives. This study contributes to the current literature by theoretically evaluating the impact of ECZ policies on the marine environment in coastal areas, enriching the mechanism of integrated environmental policies on marine ecological protection, and providing references for formulating and implementing environmental policies.

3.
Sci Total Environ ; 931: 173024, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719048

RESUMEN

Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. ß-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on ß-cyclocitral levels in water. Here, we conducted a study on the ß-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), ß-cyclocitral in the water (Wcyc), ß-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, ß-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of ß-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit ß-cyclocitral, the release of ß-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of ß-cyclocitral.

4.
Medicine (Baltimore) ; 103(18): e38029, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701261

RESUMEN

Colorectal cancer is a common malignant tumor in intestinal tract, the early symptoms are not obvious. Gastric cancer is a malignant tumor originating from the gastric mucosal epithelium. However, the role of MYC and non-SMC condensin II complex subunit G2 (NCAPG2) in colorectal cancer and gastric cancer remains unclear. The colorectal cancer datasets GSE49355 and gastric cancer datasets GSE19826 were downloaded from gene expression omnibus database. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. Functional enrichment analysis, gene set enrichment analysis (GSEA) and immune infiltration analysis was performed. Construction and analysis of protein-protein interactions (PPI) network. Survival analysis and comparative toxicogenomics database (CTD) were performed. A heat map of gene expression was drawn. A total of 751 DEGs were obtained. According to the gene ontology (GO) analysis, in Biological process (BP) analysis, they are mainly enriched in cell differentiation, cartilage development, and skeletal development. In cellular component (CC) analysis, they are mainly enriched in the cytoskeleton of muscle cells and actin filaments. In molecular function (MF) analysis, they are mainly concentrated in Rho GTPase binding, DNA binding, and fibronectin binding. In Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, they are mainly enriched in the MAPK signaling pathway, apoptosis, and cancer pathways. The soft threshold power for WGCNA analysis was set to 9, resulting in the generation of 40 modules. Ultimately, 2 core genes (MYC and NCAPG2) were identified. The heatmap of core gene expression showed high expression of MYC and NCAPG2 in colorectal cancer tissue samples and low expression in normal tissue samples, while they were core molecules in gastric cancer. Survival analysis indicated that MYC and NCAPG2 were risk factors, showing an upregulation trend with increasing risk scores. CTD analysis revealed associations of MYC and NCAPG2 with colorectal cancer, gastric cancer, inflammation, and immune system diseases. MYC and NCAPG2 are highly expressed in colorectal cancer. The higher the expression of MYC and NCAPG2, the worse the prognosis. MYC and NCAPG2 are core molecules in gastric cancer.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mapas de Interacción de Proteínas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Perfilación de la Expresión Génica
5.
Science ; 384(6695): eadj4857, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696569

RESUMEN

B lymphocytes are essential mediators of humoral immunity and play multiple roles in human cancer. To decode the functions of tumor-infiltrating B cells, we generated a B cell blueprint encompassing single-cell transcriptome, B cell-receptor repertoire, and chromatin accessibility data across 20 different cancer types (477 samples, 269 patients). B cells harbored extraordinary heterogeneity and comprised 15 subsets, which could be grouped into two independent developmental paths (extrafollicular versus germinal center). Tumor types grouped into the extrafollicular pathway were linked with worse clinical outcomes and resistance to immunotherapy. The dysfunctional extrafollicular program was associated with glutamine-derived metabolites through epigenetic-metabolic cross-talk, which promoted a T cell-driven immunosuppressive program. These data suggest an intratumor B cell balance between extrafollicular and germinal-center responses and suggest that humoral immunity could possibly be harnessed for B cell-targeting immunotherapy.


Asunto(s)
Linfocitos B , Centro Germinal , Linfocitos Infiltrantes de Tumor , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/genética , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Inmunoterapia , Transcriptoma , Análisis de la Célula Individual , Epigénesis Genética , Inmunidad Humoral , Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/inmunología
6.
Neuropsychiatr Dis Treat ; 20: 855-862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628602

RESUMEN

Objective: We explored the correlation between the presence of isocitrate dehydrogenase-1 (IDH1) mutations and the incidence of postoperative epilepsy in patients with glioblastoma, as well as assessed the efficacy of preemptive administration of antiepileptic medications in mitigating the occurrence of postoperative epilepsy. Methods: Fifty-three patients who received a postoperative pathological diagnosis of glioblastoma, were enrolled in this study. Tumor specimens were subjected to IDH1 gene analysis. The patient cohort was stratified based on their IDH1 mutation status and the administration of prophylactic antiepileptic drugs during the postoperative phase. We subsequently conducted a comparative analysis of postoperative epileptic complications within each patient subgroup. Results: In the cohort of 53 patients under study, the occurrence of epilepsy was observed in 10 out of 21 patients carrying IDH1 mutations, while 5 out of 32 patients with wild-type IDH1 also experienced epilepsy, revealing a statistically significant difference (P < 0.05). Among the 27 patients who received prophylactic antiepileptic drugs, 6 of them developed epilepsy, whereas 9 out of 26 patients who did not receive prophylactic antiepileptic drugs exhibited concurrent epilepsy, with no statistically significant difference (P > 0.05). However, when performing a subgroup analysis, it was found that 3 out of 12 patients with IDH1 mutations who received prophylactic antiepileptic drugs experienced epilepsy, whereas 7 out of 9 patients who did not receive prophylactic antiepileptic drugs developed epilepsy, demonstrating a statistically significant difference (P < 0.05). Furthermore, within the group of 15 patients with wild-type IDH1, 3 patients who received prophylactic antiepileptic drugs developed epilepsy, while 2 cases of epilepsy occurred among the 17 patients who did not receive prophylactic antiepileptic drugs, with no statistically significant difference (P > 0.05). Conclusion: In individuals with IDH1 mutant glioblastoma who have undergone surgical resection, the implementation of preventive antiepileptic therapy demonstrates a potential to diminish the occurrence of postoperative epilepsy.

7.
Biosens Bioelectron ; 257: 116299, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636318

RESUMEN

Skin-interfaced microfluidic patch has become a reliable device for sweat collection and analysis. However, the intractable problems of emptying the microchannel for reuse, and the channel's volumetric capacity limited by the size of the patch, directly hinder the practical application of sweat sensors. Herein, we report an adaptively resettable microfluidic sweat patch (Art-Sweat patch) capable of continuously monitoring both sweat rate (0.2-4.0 µL min-1) and total ionic charge concentration (10-200 mmol L-1). We develop a platform with a vertical and horizontal microchannel combined strategy, enabling repeatedly filling sweat and emptying the microchannel for autonomously resetting and detecting. The variation in the emptied volume is designed to be adaptively identified by the sensor, resulting in enhanced stability and an enlarged volumetric capacity of over 300 µL. By integrating with self-designed wireless transmission modules, the proposed Art-Sweat patch shows product-level wearability and high performance in monitoring variations in regional sweat rate and concentration for hydration status assessment.


Asunto(s)
Técnicas Biosensibles , Electrólitos , Sudor , Sudor/química , Humanos , Técnicas Biosensibles/instrumentación , Electrólitos/química , Dispositivos Electrónicos Vestibles , Diseño de Equipo , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación
8.
Oncol Rep ; 51(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38666541

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies worldwide. The 5­year survival rate of patients diagnosed with the early stages of the disease is markedly higher than that of patients in the advanced stages. Therefore, identifying novel biomarkers and drug targets for CRC is critical for clinical practice. Zinc finger protein 169 (ZNF169) is a crucial transcription factor, and its role in CRC remains to be explored. The present study aimed to investigate the clinical relevance, function and underlying mechanisms of ZNF169 in CRC growth and proliferation. The Cancer Genome Atlas (TCGA) database was utilized to analyze the clinical relevance of ZNF169 in patients with CRC. Immunohistochemical staining was performed on tissue samples from patients with CRC to detect the expression of ZNF169. The HCT­116, HT­29 and RKO cell lines were employed for in vitro experiments. The overexpression and knockdown of ZNF169 were achieved by transfecting the cells with lentivirus and small interfering RNAs, respectively. Cell Counting Kit­8, colony formation and EdU staining assays were applied to investigate the function of ZNF169 in CRC cells. Dual luciferase activity and chromatin immunoprecipitation (ChIP)­quantitative PCR (qPCR) assays were performed to identify the regulatory effects of ZNF169 on the ankyrin repeat and zinc­finger domain­containing 1 (ANKZF1; also known as ZNF744) gene. Reverse transcription­quantitative PCR and western blot analysis were performed to measure mRNA and protein expression, respectively. The analysis of TCGA data revealed a positive correlation between ZNF169 and ANKZF1, with the overexpression of ANKZF1 being associated with a poor prognosis of patients with CRC. The experimental results demonstrated that ZNF169 was expression upregulated in CRC tissue compared with that in normal colon tissue. Gain­of­function and loss­of­function experiments revealed that ZNF169 enhanced the intensity of EdU staining, promoting the growth and proliferation of CRC cells. Furthermore, the overexpression of ZNF169 potentiated the transcriptional activity of the ANKZF1 gene, while the knockdown of ZNF169 produced the opposite results. ChIP­qPCR confirmed the interaction between ZNF169 and the promoter sequence of ANKZF1. Rescue experiments revealed that ZNF169 accelerated CRC cell growth and proliferation through the upregulation of ANKZF1. Furthermore, there was a positive correlation identified between ZNF169 and ANKZF1, and upregulation of ANKZF1 expression was associated with the poor prognosis of patients with CRC. On the whole, the present study demonstrates that ZNF169 contributes to CRC malignancy by potentiating the expression of ANKZF1. Thus, the regulation of ZNF169 and/or ANKZF1 expression may represent a viable strategy for the treatment patients with CRC with a high expression of ZNF169.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Regulación hacia Arriba , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HCT116 , Células HT29 , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Pronóstico , Regiones Promotoras Genéticas
9.
Clin. transl. oncol. (Print) ; 26(4): 808-824, Abr. 2024. ilus
Artículo en Inglés | IBECS | ID: ibc-VR-45

RESUMEN

Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/β-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Neoplasias/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico , /genética , Fosfatidilinositol 3-Quinasa Clase Ia
10.
ACS Catal ; 14(8): 6045-6061, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38660612

RESUMEN

Single-atom alloys (SAAs) have attracted considerable attention as promising electrocatalysts in reactions central to energy conversion and chemical transformation. In contrast to monometallic nanocrystals and metal alloys, SAAs possess unique and intriguing physicochemical properties, positioning them as ideal model systems for studying structure-property relationships. However, the field is still in its early stages. In this Perspective, we first review and summarize rational synthesis methods and advanced characterization techniques for SAA nanoparticle catalysts. We then emphasize the extensive applications of SAAs in a range of electrocatalytic reactions, including fuel cell reactions, water splitting, and carbon dioxide and nitrate reductions. Finally, we provide insights into existing challenges and prospects associated with the controlled synthesis, characterization, and design of SAA catalysts.

11.
Open Med (Wars) ; 19(1): 20240953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633219

RESUMEN

Purpose: The aim of this study is to describe the novel epidemiological and clinical characteristics of influenza A-induced severe pneumonia occurring after the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to further assess its potential risk factors for mortality. Methods: We retrospectively studied the consecutive case series of 30 patients with confirmed influenza A-induced severe pneumonia treated in the intensive care unit at Dazhou Central Hospital in Sichuan, China, from March 1 to April 30, 2023. Logistic regression was used to analyze the independent risk factors, and receiver operating characteristic (ROC) curves were applied to evaluate the predictive efficacy of associated risk factors for mortality. Results: The mortality rate was 33.3% in this study. Independent risk factors for mortality of patients were acute respiratory distress syndrome (ARDS) (p = 0.044) and septic shock (p = 0.012). ROC statistics for ARDS and septic shock to predict mortality in patients with influenza A-induced severe pneumonia demonstrated an area under the curve of 0.800 (sensitivity 80.0%, specificity 80.0%) and 0.825 (sensitivity 70.0%, specificity 95.0%), respectively. Conclusion: ARDS and septic shock were the independent risk factors for mortality in patients with influenza A-induced severe pneumonia following the end of the SARS-CoV-2 pandemic. But high level of next generation sequencing reads Aspergillus coinfection, and comorbidities did not increase death risk of the study population.

12.
J Nat Prod ; 87(4): 1103-1115, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38600744

RESUMEN

Twelve new alkaloids, scolopenolines A-L (1-7, 9-11, 13, 14), along with six known analogues, were isolated from Scolopendra subspinipes mutilans, identified by analysis of spectroscopic data and quantum chemical and computational methods. Scolopenoline A (1), a unique guanidyl-containing C14 quinoline alkaloid, features a 6/6/5 ring backbone. Scolopenoline B (2) is a novel sulfonyl-containing heterodimer comprising quinoline and tyramine moieties. Scolopenoline G (7) presents a rare C12 quinoline skeleton with a 6/6/5 ring system. Alkaloids 1, 8, 10, and 15-18 display anti-inflammatory activity, while 10 and 16-18 also exhibit anti-renal-fibrosis activity. Drug affinity responsive target stability and RNA-interference assays show that Lamp2 might be a potentially important target protein of 16 for anti-renal-fibrosis activity.


Asunto(s)
Alcaloides , Animales Ponzoñosos , Quilópodos , Animales , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Estructura Molecular , Artrópodos/química , Fibrosis/tratamiento farmacológico , Riñón/efectos de los fármacos , Quinolinas/farmacología , Quinolinas/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Humanos
13.
J Cancer Res Clin Oncol ; 150(4): 199, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627278

RESUMEN

PURPOSE: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant and fatal liver tumor with increasing incidence worldwide. Lactate metabolism has been recently reported as a crucial contributor to tumor progression and immune regulation in the tumor microenvironment. However, it remains poorly identified about the biological functions of lactate metabolism in iCCA, which hinders the development of prognostic tools and therapeutic interventions. METHODS: The univariate Cox regression analysis and Boruta algorithm were utilized to identify key lactate metabolism-related genes (LMRGs), and a prognostic signature was constructed based on LMRG scores. Genomic variations and immune cell infiltration were evaluated in the high and low LMRG score groups. Finally, the biological functions of key LMRGs were verified with in vitro and in vivo experiments. RESULTS: Patients in the high LMRG score group exhibit a poor prognosis compared to those in the low LMRG score group, with a high frequency of TP53 and KRAS mutations. Moreover, the infiltration and function of NK cells were compromised in the high LMRG score group, consistent with the results from two independent single-cell RNA sequencing datasets and immunohistochemistry of tissue microarrays. Experimental data revealed that lactate dehydrogenase A (LDHA) knockdown inhibited proliferation and migration in iCCA cell lines and tumor growth in immunocompetent mice. CONCLUSION: Our study revealed the biological roles of LDHA in iCCA and developed a reliable lactate metabolism-related prognostic signature for iCCA, offering promising therapeutic targets for iCCA in the clinic.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Animales , Ratones , Pronóstico , Colangiocarcinoma/genética , Lactato Deshidrogenasa 5 , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Lactatos , Microambiente Tumoral/genética
14.
Nanoscale ; 16(16): 8046-8059, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38563130

RESUMEN

The biomedical application of nanotechnology in cancer treatment has demonstrated significant potential for improving treatment efficiencies and ameliorating adverse effects. However, the medical translation of nanotechnology-based nanomedicines faces challenges including hazardous environmental effects, difficulties in large-scale production, and possible excessive costs. In the present study, we extracted and purified natural exosome-like nanoparticles (ELNs) from Phellinus linteus. These nanoparticles (denoted as P-ELNs) had an average particle size of 154.1 nm, displayed a negative zeta potential of -31.3 mV, and maintained stability in the gastrointestinal tract. Furthermore, P-ELNs were found to contain a diverse array of functional components, including lipids and pharmacologically active small-molecule constituents. In vitro investigations suggested that they exhibited high internalization efficiency in liver tumor cells (Hepa 1-6) and exerted significant anti-proliferative, anti-migratory, and anti-invasive effects against Hepa 1-6 cells. Strikingly, the therapeutic outcomes of oral P-ELNs were confirmed in an animal model of metastatic hepatocellular carcinoma by amplifying reactive oxygen species (ROS) and rebalancing the gut microbiome. These findings demonstrate the potential of P-ELNs as a promising oral therapeutic platform for liver cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Microbioma Gastrointestinal , Neoplasias Hepáticas , Especies Reactivas de Oxígeno , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Exosomas/metabolismo , Exosomas/química , Microbioma Gastrointestinal/efectos de los fármacos , Basidiomycota/química , Basidiomycota/metabolismo , Nanopartículas/química , Phellinus/química , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Administración Oral
15.
Cancer Discov ; 14(4): 653-657, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571418

RESUMEN

SUMMARY: Nutrients are essential for supporting tumor growth and immune cell function in the tumor microenvironment, but emerging evidence reveals a paradoxical competition and collaboration between the metabolic demands of proliferating cancer cells and immune cell activation. Dietary interventions and metabolic immunoengineering offer promise to selectively modulate cancer and immune cell metabolism by targeting metabolic sensing processes rather than pathways directly, moving beyond conventional ideas and heralding an exciting new era of immunometabolism discovery and translation.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Microambiente Tumoral
16.
J Med Virol ; 96(5): e29634, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38682578

RESUMEN

Metabolic reprogramming induced by Epstein-Barr virus (EBV) often mirrors metabolic changes observed in cancer cells. Accumulating evidence suggests that lytic reactivation is crucial in EBV-associated oncogenesis. The aim of this study was to explore the role of metabolite changes in EBV-associated malignancies and viral life cycle control. We first revealed that EBV (LMP1) accelerates the secretion of the oncometabolite D-2HG, and serum D-2HG level is a potential diagnostic biomarker for NPC. EBV (LMP1)-driven metabolite changes disrupts the homeostasis of global DNA methylation and demethylation, which have a significantly inhibitory effect on active DNA demethylation and 5hmC content. We found that loss of 5hmC indicates a poor prognosis for NPC patients, and that 5hmC modification is a restriction factor of EBV reactivation. We confirmed a novel EBV reactivation inhibitor, α-KG, which inhibits the expression of EBV lytic genes with CpG-containing ZREs and the latent-lytic switch by enhancing 5hmC modification. Our results demonstrate a novel mechanism of which metabolite abnormality driven by EBV controls the viral lytic reactivation through epigenetic modification. This study presents a potential strategy for blocking EBV reactivation, and provides potential targets for the diagnosis and therapy of NPC.


Asunto(s)
Metilación de ADN , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Activación Viral , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Carcinoma Nasofaríngeo/virología , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/virología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/genética , Epigénesis Genética , Progresión de la Enfermedad
17.
Front Microbiol ; 15: 1370334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686112

RESUMEN

Owning to their extreme environmental conditions, lakes on the Qinghai-Tibet Plateau have typically displayed a simplistic food web structure, rendering them more vulnerable to climate change compared to lakes in plains. Phytoplankton, undergoing a changing aquatic environment, play a crucial role in the material cycle and energy flow of the food chain, particularly important for the unique fish species of the Tibetan Plateau. To identify the changing environment indexes and determine the response of phytoplankton composition to the environment change in alpine lakes, three lakes-Lake Qinghai, Lake Keluke and Lake Tuosu-were selected as study areas. Seasonal sampling surveys were conducted in spring and summer annually from 2018 to 2020. Our findings revealed there were significant changes in physicochemical parameters and phytoplankton in the three lakes. Bacillariophyta was the predominant phytoplankton in Lake Qinghai from 2018 to 2020, with the genera Synedra sp., Navicula sp., Cymbella sp. and Achnanthidium sp. predominated alternately. Lake Keluke alternated between being dominated by Bacillariophyta and cyanobacteria during the same period. Dolichospermum sp., a cyanobacteria, was prevalent in the summer of 2018 and 2019 and in the spring of 2020. In Lake Tuosu, Bacillariophyta was the predominant phytoplankton from 2018 to 2020, except in the summer of 2019, which was dominated by cyanobacteria. Synedra sp., Oscillatoria sp., Pseudoanabaena sp., Chromulina sp. and Achnanthidium sp. appeared successively as the dominant genera. Analysis revealed that all three lakes exhibited higher phytoplankton abundance in 2018 that in 2019 and 2020. Concurrently, they experienced higher average temperatures in 2018 than in the subsequent years. The cyanobacteria, Bacillariophyta, Chlorophyta and overall phytoplankton increased with temperature and decreased with salinity and NH4-N. Besides, the ratios of cyanobacteria, and the ratios of Bacillariophyta accounted in total phytoplankton increased with temperature. These findings suggest that cyanobacteria and phytoplankton abundance, especially Bacillariophyta, may have an increase tendency in the three alpine lakes under warm and wet climate.

18.
Phys Med Biol ; 69(10)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38593827

RESUMEN

Objective.To address the challenge of meningioma grading, this study aims to investigate the potential value of peritumoral edema (PTE) regions and proposes a unique approach that integrates radiomics and deep learning techniques.Approach.The primary focus is on developing a transfer learning-based meningioma feature extraction model (MFEM) that leverages both vision transformer (ViT) and convolutional neural network (CNN) architectures. Additionally, the study explores the significance of the PTE region in enhancing the grading process.Main results.The proposed method demonstrates excellent grading accuracy and robustness on a dataset of 98 meningioma patients. It achieves an accuracy of 92.86%, precision of 93.44%, sensitivity of 95%, and specificity of 89.47%.Significance.This study provides valuable insights into preoperative meningioma grading by introducing an innovative method that combines radiomics and deep learning techniques. The approach not only enhances accuracy but also reduces observer subjectivity, thereby contributing to improved clinical decision-making processes.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Meningioma , Clasificación del Tumor , Meningioma/diagnóstico por imagen , Meningioma/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Edema/diagnóstico por imagen , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Radiómica
19.
Biosensors (Basel) ; 14(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38667174

RESUMEN

A highly sensitive and selective electrogenerated chemiluminescence (ECL) biosensor was developed for the determination of matrix metalloproteinase 3 (MMP-3) in serum via the target-induced cleavage of an oligopeptide. One ECL probe (named as Ir-peptide) was synthesized by covalently linking a new cyclometalated iridium(III) complex ([(3-pba)2Ir(bpy-COOH)](PF6)) (3-pba = 3-(2-pyridyl) benzaldehyde, bpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid) with an oligopeptide (CGVPLSLTMGKGGK). An ECL biosensor was fabricated by firstly casting Nafion and gold nanoparticles (AuNPs) on a glassy carbon electrode and then self-assembling both of the ECL probes, 6-mercapto-1-hexanol and zwitterionic peptide, on the electrode surface, from which the AuNPs could be used to amplify the ECL signal and Ir-peptide could serve as an ECL probe to detect the MMP-3. Thanks to the MMP-3-induced cleavage of the oligopeptide contributing to the decrease in ECL intensity and the amplification of the ECL signal using AuNPs, the ECL biosensor could selectively and sensitively quantify MMP-3 in the concentration range of 10-150 ng·mL-1 and with both a limit of quantification (26.7 ng·mL-1) and a limit of detection (8.0 ng·mL-1) via one-step recognition. In addition, the developed ECL biosensor showed good performance in the quantization of MMP-3 in serum samples, with a recovery of 92.6% ± 2.8%-105.6% ± 5.0%. An increased level of MMP-3 was found in the serum of rheumatoid arthritis patients compared with that of healthy people. This work provides a sensitive and selective biosensing method for the detection of MMP-3 in human serum, which is promising in the identification of patients with rheumatoid arthritis.


Asunto(s)
Técnicas Biosensibles , Oro , Mediciones Luminiscentes , Metaloproteinasa 3 de la Matriz , Nanopartículas del Metal , Oligopéptidos , Humanos , Metaloproteinasa 3 de la Matriz/sangre , Oro/química , Nanopartículas del Metal/química , Luminiscencia , Límite de Detección , Electrodos , Técnicas Electroquímicas
20.
Transl Androl Urol ; 13(3): 433-441, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38590967

RESUMEN

Background: ARASENS has demonstrated the efficacy and safety for darolutamide (DARO) with androgen deprivation therapy (ADT) plus docetaxel in metastasis hormone-sensitive prostate cancer (mHSPC). There is a lack of reports for DARO with ADT in mHSPC though the regimen is used in clinical from time to time. Moreover, recent studies have supported the importance of early and rapid prostate-specific antigen (PSA) reduction, which correlates with reduced disease progression and improved survival in patients with mHSPC. This study aims to evaluate PSA reduction as a primary endpoint for DARO with ADT in the treatment of mHSPC and to evaluate the real-world short-term PSA control of DARO with ADT from two leading medical centers in China. Methods: We retrospectively reviewed the clinical records of patients with mHSPC receiving ADT and DARO (600 mg, b.i.d.). The collection of data spanned from March 1, 2022, to July 31, 2023. The main observation indicators were PSA level and drug-related adverse events (AE) after medication. PSA levels were closely monitored prior to treatment initiation and at 2-week intervals, as well as at 1, 3, and 6 months after the initiation of treatment. We also conducted an analysis to determine the proportion of patients achieving a PSA reduction of 50% or more (PSA50) and 90% or more (PSA90) as well as the percentage of patients with a notable decrease in PSA level to 0.2 ng/mL and PSA nadir of ≤0.02 ng/mL. Results: Fifty-one patients were included in the study, with a median age of 73 years. At diagnosis of HSPC, the majority of patients had a Gleason score ≥8 (n=40, 78.40%) and a median baseline PSA level of 88 ng/mL. Approximately 45.1% (n=23) of patients had a Charlson Comorbidity Index over 1 and were receiving one or more nontumor-related treatments. The median follow-up time was 9.3 months (range, 1.16-15.8 months). The median reductions in PSA levels compared to baseline were 84.37%, 91.48%, 94.67% and 99.81% at 2 weeks, 1 month, 3 months and 6 months after administration of DARO with ADT, respectively. The median time to PSA50, PSA90, significant PSA reduction (PSA <0.2 ng/mL), and PSA nadir (PSA <0.02 ng/mL) was 0.97, 1.27, 1.98, and 2.08 months, respectively. AE mainly included fatigue (two patients) and arm pain (one patient), all of which were grade I or II AE. No grade III or AE were observed. Conclusions: For treating prostate cancer, DARO with ADT has good early efficacy, demonstrating prompt and substantial control of PSA levels, with a favorable safety profile.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...