Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1837: 148855, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38471644

RESUMEN

Subarachnoid hemorrhage (SAH) is characterized by the extravasation of blood into the subarachnoid space, in which erythrocyte lysis is the primary contributor to cell death and brain injuries. New evidence has indicated that meningeal lymphatic vessels (mLVs) are essential in guiding fluid and macromolecular waste from cerebrospinal fluid (CSF) into deep cervical lymph nodes (dCLNs). However, the role of mLVs in clearing erythrocytes after SAH has not been completely elucidated. Hence, we conducted a cross-species study. Autologous blood was injected into the subarachnoid space of rabbits and rats to induce SAH. Erythrocytes in the CSF were measured with/without deep cervical lymph vessels (dCLVs) ligation. Additionally, prior to inducing SAH, we administered rats with vascular endothelial growth factor C (VEGF-C), which is essential for meningeal lymphangiogenesis and maintaining integrity and survival of lymphatic vessels. The results showed that the blood clearance rate was significantly lower after dCLVs ligation in both the rat and rabbit models. DCLVs ligation aggravated neuroinflammation, neuronal damage, brain edema, and behavioral impairment after SAH. Conversely, the treatment of VEGF-C enhanced meningeal lymphatic drainage of erythrocytes and improved outcomes in SAH. In summary, our research highlights the indispensable role of the meningeal lymphatic pathway in the clearance of blood and mediating consequences after SAH.


Asunto(s)
Vasos Linfáticos , Ratas Sprague-Dawley , Hemorragia Subaracnoidea , Animales , Conejos , Hemorragia Subaracnoidea/metabolismo , Ratas , Masculino , Ligadura/métodos , Eritrocitos/metabolismo , Modelos Animales de Enfermedad , Factor C de Crecimiento Endotelial Vascular/metabolismo , Meninges , Edema Encefálico/metabolismo
2.
Brain Res ; 1827: 148758, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38199308

RESUMEN

BACKGROUND: Subarachnoid hemorrhage (SAH) is a life-threatening neurological disease that usually has a poor prognosis. Neurogenesis is a potential therapeutic target for brain injury. Ketone metabolism also plays neuroprotective roles in many neurological disorders. OXCT1 (3-Oxoacid CoA-Transferase 1) is the rate-limiting enzyme of ketone body oxidation. In this study, we explored whether increasing ketone oxidation by upregulating OXCT1 in neurons could promote neurogenesis after SAH, and evaluated the potential mechanism involved in this process. METHODS: The ß-hydroxybutyrate content was measured using an enzymatic colorimetric assay. Adeno-associated virus targeting neurons was injected to overexpress OXCT1, and the expression and localization of proteins were evaluated by western blotting and immunofluorescence staining. Adult hippocampal neurogenesis was evaluated by dual staining with doublecortin and 5-Ethynyl-2'-Deoxyuridine. LY294002 was intracerebroventricularly administered to inhibit Akt activity. The Morris water maze and Y-maze tests were employed to assess cognitive function after SAH. RESULTS: The results showed that OXCT1 expression and hippocampal neurogenesis significantly decreased in the early stage of SAH. Overexpression of OXCT1 successfully increased hippocampal neurogenesis via activation of Akt/GSK-3ß/ß-catenin signaling and improved cognitive function, both of which were reversed by administration of LY294002. CONCLUSIONS: OXCT1 regulated hippocampal ketone body metabolism and increased neurogenesis through mechanisms mediated by the Akt/GSK-3ß/ß-catenin pathway, improving cognitive impairment after SAH.


Asunto(s)
Coenzima A Transferasas , Disfunción Cognitiva , Hipocampo , Neurogénesis , Hemorragia Subaracnoidea , Ácido 3-Hidroxibutírico , beta Catenina , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones
3.
Free Radic Biol Med ; 210: 318-332, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052274

RESUMEN

Iron accumulation is one of the most essential pathological events after subarachnoid hemorrhage (SAH). Ferroportin1 (FPN1) is the only transmembrane protein responsible for exporting iron. Hepcidin, as the major regulator of FPN1, is responsible for its degradation. Our study investigated how the interaction between FPN1 and hepcidin contributes to iron accumulation after SAH. We found that iron accumulation aggravated after SAH, along with decreased FPN1 in neurons and increased hepcidin in astrocytes. After knocking down hepcidin in astrocytes, the neuronal FPN1 significantly elevated, thus attenuating iron accumulation. After SAH, p-Smad1/5 and Smad4 tended to translocate into the nucleus. Moreover, Smad4 combined more fragments of the promoter region of Hamp after OxyHb stimulation. By knocking down Smad1/5 or Smad4 in astrocytes, FPN1 level restored and iron overload attenuated, leading to alleviated neuronal cell death and improved neurological function. However, the protective role disappeared after recombinant hepcidin administration. Therefore, our study suggests that owing to the nuclear translocation of transcription factors p-Smad1/5 and Smad4, astrocyte-derived hepcidin increased significantly after SAH, leading to a decreased level of neuronal FPN1, aggravation of iron accumulation, and worse neurological outcome.


Asunto(s)
Hepcidinas , Hemorragia Subaracnoidea , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Astrocitos/metabolismo , Hemorragia Subaracnoidea/patología , Hierro/metabolismo , Neuronas/metabolismo
4.
Front Mol Neurosci ; 16: 1121944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063365

RESUMEN

Introduction: Endothelial nitric oxide synthase (eNOS) uncoupling plays a significant role in acute vasoconstriction during early brain injury (EBI) after subarachnoid hemorrhage (SAH). Astrocytes in the neurovascular unit extend their foot processes around endothelia. In our study, we tested the hypothesis that increased nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression in astrocytes after SAH leads to eNOS uncoupling. Methods: We utilized laser speckle contrast imaging for monitoring cortical blood flow changes in mice, nitric oxide (NO) kits to measure the level of NO, and a co-culture system to study the effect of astrocytes on endothelial cells. Moreover, the protein levels were assessed by Western blot and immunofluorescence staining. We used CCK-8 to measure the viability of astrocytes and endothelial cells, and we used the H2O2 kit to measure the H2O2 released from astrocytes. We used GSK2795039 as an inhibitor of NOX2, whereas lentivirus and adeno-associated virus were used for dihydrofolate reductase (DHFR) knockdown in vivo and in vitro. Results: The expression of NOX2 and the release of H2O2 in astrocytes are increased, which was accompanied by a decrease in endothelial DHFR 12 h after SAH. Moreover, the eNOS monomer/dimer ratio increased, leading to a decrease in NO and acute cerebral ischemia. All of the above were significantly alleviated after the administration of GSK2795039. However, after knocking down DHFR both in vivo and in vitro, the protective effect of GSK2795039 was greatly reversed. Discussion: The increased level of NOX2 in astrocytes contributes to decreased DHFR in endothelial cells, thus aggravating eNOS uncoupling, which is an essential mechanism underlying acute vasoconstriction after SAH.

5.
Brain Res ; 1808: 148324, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36921750

RESUMEN

BACKGROUND: Ketones are not only utilized to produce energy but also play a neuroprotective role in many neurodegenerative diseases. However, whether this process has an impact on secondary brain damage after traumatic brain injury (TBI) remains unknown. OXCT1 (3-Oxoacid CoA-Transferase 1) is the rate-limiting enzyme in the intra-neuronal utilization of ketones. In this study, we investigated whether reduced expression of OXCT1 after TBI could impact neuroprotective mechanisms and exacerbate neurological dysfunction. MATERIALS AND METHODS: Experimental TBI was induced by a modified version of the weight drop model, it is a model of severe head trauma. Expression of OXCT1 in the injured hippocampus of mice was measured at different time points using immunoblotting assays. The release of abnormal mitochondrial cytochrome c from neurons of the mouse injured lateral hippocampus was measured 1 week after TBI using immunoblotting assays. Neuronal death was assessed by Nissl staining and the level of reactive oxygen species (ROS) within the neurons of the injured lateral hippocampus was assessed by Dihydroethidium staining. RESULTS: OXCT1 was overexpressed in hippocampal neurons by injection of adeno-associated virus into the lateral ventricle. OXCT1 expression levels decreased significantly 1 week post-TBI. After comparing the data obtained from different groups of mice, OXCT1 was found to significantly increase the expression of SIRT3 and reduce the proportion of acetylated SOD2, thus decreasing the production of ROS in the injured hippocampal neurons, reducing neuronal death, and improving cognitive function. CONCLUSIONS: OXCT1 has a critical previously unappreciated protective role in neurological impairment following TBI via the SIR3-SOD2 pathway. These findings highlight the potential of OXCT1 as a simple treatment for patients with TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Fármacos Neuroprotectores , Sirtuina 3 , Animales , Ratones , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Cetonas , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/metabolismo
6.
Int J Biol Sci ; 19(2): 449-464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632454

RESUMEN

Metastasis leads to the vast majority of breast cancer mortality. Increasing evidence has shown that N6-methyladenosine (m6A) modification and its associated regulators play a pivotal role in breast cancer metastasis. Here, we showed that overexpression of the m6A reader IGF2BP1 was clinically correlated with metastasis in breast cancer patients. Moreover, IGF2BP1 promoted distant metastasis in vitro and in vivo. Mechanistically, we first identified USP10 as the IGF2BP1 deubiquitinase. USP10 can bind to, deubiquitinate, and stabilize IGF2BP1, resulting in its higher expression level in breast cancer. Furthermore, by MeRIP-seq and experimental verification, we found that IGF2BP1 directly recognized and bound to the m6A sites on CPT1A mRNA and enhanced its stability, which ultimately mediated IGF2BP1-induced breast cancer metastasis. In clinical samples, USP10 levels correlated with IGF2BP1 and CPT1A levels, and breast cancer patients with high levels of USP10, IGF2BP1, and CPT1A had the worst outcome. Therefore, these findings suggest that the USP10/IGF2BP1/CPT1A axis facilitates breast cancer metastasis, and this axis may be a promising prognostic biomarker and therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama , Ubiquitina Tiolesterasa , Femenino , Humanos , Neoplasias de la Mama/patología , ARN Mensajero/metabolismo , Ubiquitina Tiolesterasa/genética
7.
Free Radic Biol Med ; 193(Pt 2): 499-510, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36336227

RESUMEN

Endothelial malfunction is a major contributor to early or delayed vasospasm after subarachnoid hemorrhage (SAH). As a representative form of endothelial dysfunction, endothelial nitric oxide synthase (eNOS) uncoupling leads to a reduction in nitric oxide (NO) generated by endothelial cells. In this study, we investigated how the interaction between endothelial NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4) and DHFR (dihydrofolate reductase) contributes to eNOS uncoupling after SAH. Setanaxib and the adeno-associated virus (AAV) targeting brain vascular endothelia were injected through the tail vein and the expression and localization of proteins were examined by western blot and immunofluorescence staining. The NO content was measured using the NO assay kit, and laser speckle contrast imaging was used to assess cortical perfusion. ROS (reactive oxygen species) level was detected by DHE (dihydroethidium) staining, DCFH-DA (2',7'-dichlorofluorescin diacetate) staining and H2O2 (hydrogen peroxide) measurement. The Garcia score was employed to examine neurological function. Setanaxib is widely used for its preferential inhibition for NOX1/4 over other NOX isoforms. After endothelial NOX4 was inhibited by Setanaxib in a mouse model of SAH, the endothelial DHFR level was significantly elevated, which attenuated eNOS uncoupling, increased cortical perfusion, and improved the neurological function. The protective role of inhibiting endothelial NOX4, however, disappeared after knocking down endothelial DHFR. Our results suggest that endothelial DHFR decreased significantly because of the elevated level of endothelial NOX4, which aggravated eNOS uncoupling after SAH, leading to decreased cortical perfusion and worse neurological outcome.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Hemorragia Subaracnoidea , Animales , Ratones , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasa 4/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
8.
Neuroreport ; 33(16): 690-696, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36165027

RESUMEN

BACKGROUND AND PURPOSE: Subarachnoid hemorrhage (SAH) is associated with sustained vasoconstriction in retinal vessels and vasoconstriction leads to retinal ischemia and hypoxia. Our previous finding also revealed the changes in hypoxia-related elements in the retina after SAH, further lending weight to the hypothesis that retinal vasospasm and hypoxia after SAH. Deferoxamine is a high-affinity iron chelator with reported neuroprotective effects against stroke. Here, we aimed to explore the effects of deferoxamine on retinal hypoxia after SAH. METHODS: SAH was established and deferoxamine was injected intraperitoneally for 3 days in the treatment group. To detect retinal new vessels, platelet endothelial cell adhesion molecule (CD31) was labeled by immunofluorescence and immunohistochemistry. Furthermore, the effects of deferoxamine on the expression of vascular endothelial growth factor A (VEGF-A) and hypoxia-inducible factor-1α (HIF-1α) were revealed by western blot analysis. RESULTS: The immunofluorescence and immunohistochemical staining of CD31 revealed a marked increase in new vessels in the retinal ganglion cell layer after deferoxamine treatment. By western blot analysis, HIF-1α and VEGF-A increased gradually in the first day and then rebounded to a new level on day 7. A deferoxamine-induced increase in HIF-1α/VEGF-A expression was also confirmed by western blot. CONCLUSIONS: Our findings suggest that modulating the application of deferoxamine may offer therapeutic approaches to alleviate retinal complications after SAH.


Asunto(s)
Fármacos Neuroprotectores , Hemorragia Subaracnoidea , Animales , Moléculas de Adhesión Celular/uso terapéutico , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia , Quelantes del Hierro/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley , Retina , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Exp Neurol ; 354: 114100, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35490721

RESUMEN

Among the multiple kinds of neuronal cell death triggered by traumatic brain injury (TBI), ferroptosis, an iron-dependent lipid peroxidative regulatory cell death, has a critical role. Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear transcription factor that regulates lipid metabolism and suppresses neuronal inflammation. However, the role of PPARγ in neuronal ferroptosis induced by TBI remains unclear. Here, we investigated the regulatory effect of PPARγ on neuronal ferroptosis in a weight-drop TBI model in vivo and an RAS-selective lethal 3 (RSL3)-activated ferroptotic neuronal model in vitro. PPARγ was mainly localized in the nucleus of neurons and was decreased in both the in vivo TBI model and the in vitro ferroptotic neuronal model. The addition of a specific agonist, pioglitazone, activated PPARγ, which protected neuronal function post-TBI in vivo and increased the viability of ferroptotic neurons in vitro. Further investigation suggested that PPARγ probably attenuates neuronal ferroptosis by downregulating cyclooxygenase-2 (COX2) protein expression levels in vivo and in vitro. This study revealed the relationship among PPARγ, ferroptosis and TBI and identified a potential target for comprehensive TBI treatment.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ferroptosis , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Ciclooxigenasa 2/metabolismo , Ratones , Neuronas/metabolismo , PPAR gamma/metabolismo
10.
Front Pharmacol ; 13: 1061457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703738

RESUMEN

Background: Erythrocytes and their breakdown products in the subarachnoid space (SAS) are the main contributors to the pathogenesis of subarachnoid hemorrhage (SAH). Dobutamine is a potent ß1-adrenoreceptor agonist that can increase cardiac output, thus improving blood perfusion and arterial pulsation in the brain. In this study, we investigated whether the administration of dobutamine promoted the clearance of red blood cells (RBCs) and their degraded products via meningeal lymphatic vessels (mLVs), thus alleviating neurological deficits in the early stage post-SAH. Materials and methods: Experimental SAH was induced by injecting autologous arterial blood into the prechiasmatic cistern in male C57BL/6 mice. Evans blue was injected into the cisterna magna, and dobutamine was administered by inserting a femoral venous catheter. RBCs in the deep cervical lymphatic nodes (dCLNs) were evaluated by hematoxylin-eosin staining, and the hemoglobin content in dCLNs was detected by Drabkin's reagent. The accumulation of RBCs in the dura mater was examined by immunofluorescence staining, neuronal death was evaluated by Nissl staining, and apoptotic cell death was evaluated by TUNEL staining. The Morris water maze test was used to examine the cognitive function of mice after SAH. Results: RBCs appeared in dCLNs as early as 3 h post-SAH, and the hemoglobin in dCLNs peaked at 12 h after SAH. Dobutamine significantly promoted cerebrospinal fluid (CSF) drainage from the SAS to dCLNs and obviously reduced the RBC residue in mLVs, leading to a decrease in neuronal death and an improvement in cognitive function after SAH. Conclusion: Dobutamine administration significantly promoted RBC drainage from cerebrospinal fluid in the SAS via mLVs into dCLNs, ultimately relieving neuronal death and improving cognitive function.

11.
Front Immunol ; 12: 623256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381441

RESUMEN

Nuclear factor (NF)-κB-ty -50mediated neuroinflammation plays a crucial role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). As an important negative feedback regulator of NF-κB, A20 is essential for inflammatory homeostasis. Herein, we tested the hypothesis that A20 attenuates EBI by establishing NF-κB-associated negative feedback after experimental SAH. In vivo and in vitro models of SAH were established. TPCA-1 and lentivirus were used for NF-κB inhibition and A20 silencing/overexpression, respectively. Cellular localization of A20 in the brain was determined via immunofluorescence. Western blotting and enzyme-linked immunosorbent assays were applied to observe the expression of members of the A20/tumor necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB pathway and inflammatory cytokines (IL-6, IL-1ß, TNF-α). Evans blue staining, TUNEL staining, Nissl staining, brain water content, and modified Garcia score were performed to evaluate the neuroprotective effect of A20. A20 expression by astrocytes, microglia, and neurons was increased at 24 h after SAH. A20 and inflammatory cytokine levels were decreased while TRAF6 expression was elevated after NF-κB inhibition. TRAF6, NF-κB, and inflammatory cytokine levels were increased after A20 silencing but suppressed with A20 overexpression. Also, Bcl-2, Bax, MMP-9, ZO-1 protein levels; Evans blue, TUNEL, and Nissl staining; brain water content; and modified Garcia score showed that A20 exerted a neuroprotective effect after SAH. A20 expression was regulated by NF-κB. In turn, increased A20 expression inhibited TRAF6 and NF-κB to reduce the subsequent inflammatory response. Our data also suggest that negative feedback regulation mechanism of the A20/TRAF6/NF-κB pathway and the neuroprotective role of A20 to attenuate EBI after SAH.


Asunto(s)
Encéfalo/patología , FN-kappa B/metabolismo , Hemorragia Subaracnoidea/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Retroalimentación Fisiológica , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Transducción de Señal , Hemorragia Subaracnoidea/inmunología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética
12.
Neuroreport ; 32(6): 472-478, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33788818

RESUMEN

Traumatic brain injury (TBI) is recognized as the most influential risk factor for neurodegenerative diseases later in life, including Alzheimer's disease. The aberrant genesis of amyloid-ß peptides, which is triggered by TBI, is associated with the development of Alzheimer's disease. Evidence suggests that iron plays a role in both the production of amyloid-ß and its neurotoxicity, and iron overload has been noted in the brain after TBI. We therefore investigated the effects of an iron-chelating treatment on amyloid-ß genesis in a weight-drop model of TBI in mice. Human brain samples were obtained from patients undergoing surgery for severe brain trauma. The Institute of Cancer Research mice were treated with deferoxamine by intraperitoneal injection after TBI induction. Changes in amyloid-ß(1-42) were assessed using western blot and immunohistochemical staining. Ferritin was also detected using western blot to investigate iron deposition in the mice brain. Immunofluorescent terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was also performed to evaluate neural apoptosis. The amyloid-ß(1-42) was markedly elevated after TBI in both humans and mice. Deferoxamine treatment in mice significantly decreased the levels of both amyloid-ß(1-42) and ferritin in the brain, and reduced TBI-induced neural cell apoptosis. The iron chelator deferoxamine can alleviate the increase of amyloid-ß(1-42) in the brain after TBI, and may therefore be a potential therapeutic strategy to prevent TBI patients from undergoing neurodegenerative processes.


Asunto(s)
Péptidos beta-Amiloides/efectos de los fármacos , Apoptosis/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Deferoxamina/farmacología , Ferritinas/metabolismo , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/efectos de los fármacos , Sideróforos/farmacología , Adulto , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/patología , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/metabolismo
13.
Neurosci Lett ; 742: 135554, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352284

RESUMEN

BACKGROUND AND PURPOSE: The patients who survive subarachnoid hemorrhage (SAH) often have long-term neurological complications. There are no reports about the pathological change of retina after SAH. METHODS: An experimental model of SAH was established by injecting autologous blood into the prechiasmatic cistern of Sprague-Dawley rats. Hematoxylin and eosin (HE) staining was performed to show the alternation of morphology in retina after SAH. To detect the retinal new vessels (NVs), CD31 was labelled by immunofluorescence and immunohistochemistry. The time-course expressions of vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor-1α (HIF-1 α) was also revealed by Western blot analysis. RESULTS: A clear reduction of retinal ganglion cells (RGCs) was noticed after SAH. The immunofluorescence and immunohistochemical staining of CD31 reveals a large number of NVs in RGC layer after SAH compared with the normal controls. The level of VEGF-A in the retina after SAH was increased and peaked at 12h and 14 d. The expression of HIF-1α in the retina increased as early as 3 h after SAH, reached a peak at 12 h after SAH. CONCLUSIONS: The results showed that SAH induced the retina hypoxia resulting in the reduction of RGCs, increase of NVs and activation of NVs related HIF-1α/VEGF-A pathway.


Asunto(s)
Hipoxia/metabolismo , Retina/metabolismo , Hemorragia Subaracnoidea/metabolismo , Animales , Hipoxia/etiología , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Retina/patología , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Life Sci ; 257: 118050, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32634425

RESUMEN

BACKGROUND AND PURPOSE: Early brain injury is an essential pathological process after subarachnoid hemorrhage (SAH), with many cell death modalities. Ferroptosis is a newly discovered regulated cell death caused by the iron-dependent accumulation of lipid peroxidation, which can be prevented by glutathione peroxidase 4 (GPX4). Our study aimed to investigate the role of GPX4 in neuronal cell death after experimental SAH. METHODS: In vivo experimental SAH was induced by injecting autologous arterial blood into the prechiasmatic cistern in male Sprague-Dawley rats. Meanwhile, the in vitro SAH model was performed with primary rat cortical neurons cultured in medium containing hemoglobin (Hb). Adenovirus was used to overexpress GPX4 before experimental SAH. GPX4 expression was detected by western blot and immunofluorescence experiments. Malondialdehyde (MDA) was measured to evaluate the level of lipid peroxidation. Nissl staining was employed to assess cell death in vivo, whereas lactate dehydrogenase (LDH) release was used to evaluate cell damage in vitro. The brain water content and neurological deficits were evaluated to determine brain injury. RESULTS: Endogenous GPX4 was mainly expressed in neurons, and its expression decreased at 24 h after experimental SAH. Overexpression of GPX4 significantly reduced lipid peroxidation and cell death in the experimental SAH models both in vivo and in vitro. Moreover, overexpression of GPX4 ameliorated brain edema and neurological deficits at 24 h after SAH. CONCLUSIONS: The decrease of GPX4 expression potentially plays an important role in ferroptosis during early brain injury after SAH. Overexpression of GPX4 has a neuroprotective effect after SAH.


Asunto(s)
Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/uso terapéutico , Hemorragia Subaracnoidea/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Encéfalo/metabolismo , Edema Encefálico/patología , Lesiones Encefálicas/etiología , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ferroptosis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/metabolismo
15.
Materials (Basel) ; 11(4)2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29673185

RESUMEN

Inducing magnetic moments in graphene is very important for its potential application in spintronics. Introducing sp³-defects on the graphene basal plane is deemed as the most promising approach to produce magnetic graphene. However, its universal validity has not been very well verified experimentally. By functionalization of approximately pure amino groups on graphene basal plane, a spin-generalization efficiency of ~1 μB/100 NH2 was obtained for the first time, thus providing substantial evidence for the validity of inducing magnetic moments by sp³-defects. As well, amino groups provide another potential sp³-type candidate to prepare magnetic graphene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...