Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; : e2309907, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712486

RESUMEN

The biophysical properties of the extracellular matrix (ECM) play a pivotal role in modulating cancer progression via cell-ECM interactions. However, the biophysical properties specific to gastric cancer (GC) remain largely unexplored. Pertinently, GC ECM shows significantly heterogeneous metamorphoses, such as matrix stiffening and intricate restructuring. By combining collagen I and alginate, this study designs an in vitro biomimetic hydrogel platform to independently modulate matrix stiffness and structure across a physiological stiffness spectrum while preserving consistent collagen concentration and fiber topography. With this platform, this study assesses the impacts of matrix biophysical properties on cell proliferation, migration, invasion, and other pivotal dynamics of AGS. The findings spotlight a compelling interplay between matrix stiffness and structure, influencing both cellular responses and ECM remodeling. Furthermore, this investigation into the integrin/actin-collagen interplay reinforces the central role of integrins in mediating cell-ECM interactions, reciprocally sculpting cell conduct, and ECM adaptation. Collectively, this study reveals a previously unidentified role of ECM biophysical properties in GC malignant potential and provides insight into the bidirectional mechanical cell-ECM interactions, which may facilitate the development of novel therapeutic horizons.

2.
Cancer Commun (Lond) ; 44(4): 469-490, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512764

RESUMEN

BACKGROUND: Chemoresistance is a major cause of treatment failure in gastric cancer (GC). Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an N6-methyladenosine (m6A)-binding protein involved in a variety of cancers. However, whether m6A modification and hnRNPA2B1 play a role in GC chemoresistance is largely unknown. In this study, we aimed to investigate the role of hnRNPA2B1 and the downstream mechanism in GC chemoresistance. METHODS: The expression of hnRNPA2B1 among public datasets were analyzed and validated by quantitative PCR (qPCR), Western blotting, immunofluorescence, and immunohistochemical staining. The biological functions of hnRNPA2B1 in GC chemoresistance were investigated both in vitro and in vivo. RNA sequencing, methylated RNA immunoprecipitation, RNA immunoprecipitation, and RNA stability assay were performed to assess the association between hnRNPA2B1 and the binding RNA. The role of hnRNPA2B1 in maintenance of GC stemness was evaluated by bioinformatic analysis, qPCR, Western blotting, immunofluorescence, and sphere formation assays. The expression patterns of hnRNPA2B1 and downstream regulators in GC specimens from patients who received adjuvant chemotherapy were analyzed by RNAscope and multiplex immunohistochemistry. RESULTS: Elevated expression of hnRNPA2B1 was found in GC cells and tissues, especially in multidrug-resistant (MDR) GC cell lines. The expression of hnRNPA2B1 was associated with poor outcomes of GC patients, especially in those who received 5-fluorouracil treatment. Silencing hnRNPA2B1 effectively sensitized GC cells to chemotherapy by inhibiting cell proliferation and inducing apoptosis both in vitro and in vivo. Mechanically, hnRNPA2B1 interacted with and stabilized long noncoding RNA NEAT1 in an m6A-dependent manner. Furthermore, hnRNPA2B1 and NEAT1 worked together to enhance the stemness properties of GC cells via Wnt/ß-catenin signaling pathway. In clinical specimens from GC patients subjected to chemotherapy, the expression levels of hnRNPA2B1, NEAT1, CD133, and CD44 were markedly elevated in non-responders compared with responders. CONCLUSION: Our findings indicated that hnRNPA2B1 interacts with and stabilizes lncRNA NEAT1, which contribute to the maintenance of stemness property via Wnt/ß-catenin pathway and exacerbate chemoresistance in GC.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Ribonucleoproteínas Nucleares Heterogéneas , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , ARN Largo no Codificante/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
3.
Clin Epigenetics ; 15(1): 77, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147733

RESUMEN

BACKGROUND: Downregulation of certain tumor-suppressor genes (TSGs) by aberrant methylation of CpG islands in the promoter region contributes a great deal to the oncogenesis and progression of several cancers, including gastric cancer (GC). Protocadherin 10 (PCDH10) is a newly identified TSG in various cancers and is downregulated in GC; however, the specific mechanisms of PCDH10 in GC remain elusive. Here, we elucidated a novel epigenetic regulatory signaling pathway involving the E3 ubiquitin ligase RNF180 and DNA methyltransferase 1 (DNMT1), responsible for modulating PCDH10 expression by affecting its promoter methylation. RESULTS: We revealed that PCDH10 was downregulated in GC cells and tissues, and low PCDH10 expression was correlated with lymph node metastasis and poor prognosis in patients with GC. Additionally, PCDH10 overexpression suppressed GC cell proliferation and metastasis. Mechanistically, DNMT1-mediated promoter hypermethylation resulted in decreased expression of PCDH10 in GC tissues and cells. Further analysis revealed that RNF180 can bind directly to DNMT1 and was involved in DNMT1 degradation via ubiquitination. Additionally, a positive correlation was found between RNF180 and PCDH10 expression and an inverse association between DNMT1 and PCDH10 expression showed considerable prognostic significance. CONCLUSION: Our data showed that RNF180 overexpression upregulated PCDH10 expression via ubiquitin-dependent degradation of DNMT1, thus suppressing GC cell proliferation, indicating that the RNF180/DNMT1/PCDH10 axis could be a potential therapeutic target for GC treatment.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Protocadherinas , Neoplasias Gástricas , Ubiquitina-Proteína Ligasas , Humanos , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Protocadherinas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo
4.
Int J Surg ; 109(5): 1330-1341, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37037586

RESUMEN

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) is a well-developed therapeutic target in breast and gastric cancer (GC). However, the impact of HER2 on survival and benefit from fluorouracil-based adjuvant chemotherapy remains unclear in patients with GC. MATERIALS AND METHODS: This multicenter cohort study involved 5622 consecutive stage II/III GC patients. HER2 expression was assessed prospectively via immunohistochemistry (IHC). The staining intensity was graded on a scale of 0 to 3+. An IHC score of 2+or 3+was defined as high expression, and a score of 3+was defined as overexpression. RESULTS: HER2 overexpression was independently associated with a lower 5-year overall survival (OS) in stage II [hazard ratio (HR), 2.10; 95% CI: 1.41-3.11], but not in stage III GC (HR, 1.00; 95% CI, 0.82-1.20). Further analysis revealed that stage II patients with high HER2 expression showed a poorer response to chemotherapy than stage II patients with low HER2 expression ( Pinteraction =0.024). The HRs for 5-year OS were 0.51 (95% CI, 0.38-0.70) for stage II patients with low HER2 expression, 0.58 (95% CI, 0.51-0.66) for stage III patients with low HER2 expression, 1.13 (95% CI, 0.61-2.09) for stage II patients with high HER2 expression, and 0.47 (95% CI, 0.36-0.61) for stage III patients with high HER2 expression. CONCLUSIONS: Fluorouracil-based adjuvant chemotherapy is insufficient for stage II GC patients with high HER2 expression, indicating that prospective trials are required to validate alternative HER2-targeted adjuvant therapies in the individuals above.


Asunto(s)
Neoplasias Gástricas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioterapia Adyuvante , Estudios de Cohortes , Fluorouracilo/uso terapéutico , Estadificación de Neoplasias , Pronóstico , Estudios Prospectivos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
5.
Liver Int ; 43(7): 1473-1485, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088973

RESUMEN

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Aberrant lipid metabolism and accumulation of extracellular matrix proteins are hallmarks of the disease, but the underlying mechanisms are largely unknown. This study aims to elucidate the key role of sine oculis homeobox homologue 1 (SIX1) in the development of NAFLD. METHODS: Alb-Cre mice were administered the AAV9 vector for SIX1 liver-specific overexpression or knockdown. Metabolic disorders, hepatic steatosis, and inflammation were monitored in mice fed with HFHC or MCD diet. High throughput CUT&Tag analysis was employed to investigate the mechanism of SIX1 in diet-induced steatohepatitis. RESULTS: Here, we found increased SIX1 expression in the livers of NAFLD patients and animal models. Liver-specific overexpression of SIX1 using adeno-associated virus serotype 9 (AAV9) provoked more severe inflammation, metabolic disorders, and hepatic steatosis in the HFHC or MCD-induced mice model. Mechanistically, we demonstrated that SIX1 directly activated the expression of liver X receptor α (LXRα) and liver X receptor ß (LXRß), thus inducing de novo lipogenesis (DNL). In addition, our results also illustrated a critical role of SIX1 in regulating the TGF-ß pathway by increasing the levels of type I and II TGF-ß receptor (TGFßRI/TGFßRII) in hepatic stellate cells (HSCs). Finally, we found that liver-specific SIX1 deficiency could ameliorate diet-induced NAFLD pathogenesis. CONCLUSION: Our findings suggest a detrimental function of SIX1 in the progression of NAFLD. The direct regulation of LXRα/ß and TGF-ß signalling by SIX1 provides a new regulatory mechanism in hepatic steatosis and fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Lipogénesis/fisiología , Hígado/patología , Fibrosis , Inflamación/patología , Factor de Crecimiento Transformador beta/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa
6.
Cancer Biol Med ; 21(3)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38164720

RESUMEN

OBJECTIVE: DNA damage response (DDR) deficiency has emerged as a prominent determinant of tumor immunogenicity. This study aimed to construct a DDR-related immune activation (DRIA) signature and evaluate the predictive accuracy of the DRIA signature for response to immune checkpoint inhibitor (ICI) therapy in gastrointestinal (GI) cancer. METHODS: A DRIA signature was established based on two previously reported DNA damage immune response assays. Clinical and gene expression data from two published GI cancer cohorts were used to assess and validate the association between the DRIA score and response to ICI therapy. The predictive accuracy of the DRIA score was validated based on one ICI-treated melanoma and three pan-cancer published cohorts. RESULTS: The DRIA signature includes three genes (CXCL10, IDO1, and IFI44L). In the discovery cancer cohort, DRIA-high patients with gastric cancer achieved a higher response rate to ICI therapy than DRIA-low patients (81.8% vs. 8.8%; P < 0.001), and the predictive accuracy of the DRIA score [area under the receiver operating characteristic curve (AUC) = 0.845] was superior to the predictive accuracy of PD-L1 expression, tumor mutational burden, microsatellite instability, and Epstein-Barr virus status. The validation cohort demonstrated that the DRIA score identified responders with microsatellite-stable colorectal and pancreatic adenocarcinoma who received dual PD-1 and CTLA-4 blockade with radiation therapy. Furthermore, the predictive performance of the DRIA score was shown to be robust through an extended validation in melanoma, urothelial cancer, and pan-cancer. CONCLUSIONS: The DRIA signature has superior and robust predictive accuracy for the efficacy of ICI therapy in GI cancer and pan-cancer, indicating that the DRIA signature may serve as a powerful biomarker for guiding ICI therapy decisions.


Asunto(s)
Adenocarcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Gastrointestinales , Melanoma , Neoplasias Pancreáticas , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Herpesvirus Humano 4 , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Reparación del ADN
7.
Cell Death Dis ; 13(8): 742, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038548

RESUMEN

Ferroptosis, a novel regulated cell death induced by iron-dependent lipid peroxidation, plays an important role in tumor development and drug resistance. Long noncoding RNAs (lncRNAs) are associated with various types of cancer. However, the precise roles of many lncRNAs in tumorigenesis remain elusive. Here we explored the transcriptomic profiles of lncRNAs in primary CRC tissues and corresponding paired adjacent non-tumor tissues by RNA-seq and found that LINC00239 was significantly overexpressed in colorectal cancer tissues. Abnormally high expression of LINC00239 predicts poorer survival and prognosis in colorectal cancer patients. Concurrently, we elucidated the role of LINC00239 as a tumor-promoting factor in CRC through in vitro functional studies and in vivo tumor xenograft models. Importantly, overexpression of LINC00239 decreased the anti-tumor activity of erastin and RSL3 by inhibiting ferroptosis. Collectively, these data suggest that LINC00239 plays a novel and indispensable role in ferroptosis by nucleotides 1-315 of LINC00239 to interact with the Kelch domain (Nrf2-binding site) of Keap1, inhibiting Nrf2 ubiquitination and increasing Nrf2 protein stability. Considering the recurrence and chemoresistance constitute the leading cause of death in colorectal cancer (CRC), ferroptosis induction may be a promising therapeutic strategy for CRC patients with low LINC00239 expression.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , ARN Largo no Codificante , Neoplasias Colorrectales/patología , Ferroptosis/genética , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Front Genet ; 13: 836199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601484

RESUMEN

DEAD-box helicase 27 (DDX27) was previously identified as an important mediator during carcinogenesis, while its role in gastric cancer (GC) is not yet fully elucidated. Here, we aimed to investigate the mechanism and clinical significance of DDX27 in GC. Public datasets were analyzed to determine DDX27 expression profiling. The qRT-PCR, Western blot, and immunohistochemistry analyses were employed to investigate the DDX27 expression in GC cell lines and clinical samples. The role of DDX27 in GC metastasis was explored in vitro and in vivo. Mass spectrometry, RNA-seq, and alternative splicing analysis were conducted to demonstrate the DDX27-mediated molecular mechanisms in GC. We discovered that DDX27 was highly expressed in GCs, and a high level of DDX27 indicated poor prognosis. An increased DDX27 expression could promote GC metastasis, while DDX27 knockdown impaired GC aggressiveness. Mechanically, the LLP expression was significantly altered after DDX27 downregulation, and further results indicated that LPP may be regulated by DDX27 via alternative splicing. In summary, our study indicated that DDX27 contributed to GC malignant progression via a prometastatic DDX27/LPP/EMT regulatory axis.

9.
ACS Appl Mater Interfaces ; 14(13): 15298-15306, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35333046

RESUMEN

Prussian blue analogues (PBAs) are believed to be intriguing anode materials for Li+ storage because of their tunable composition, designable topologies, and tailorable porous structures, yet they suffer from severe capacity decay and inferior cycling stability due to the volume variation upon lithiation and high electrical resistance. Herein, we develop a universal strategy for synthesizing small PBA nanoparticles hosted on two-dimensional (2D) MXene or rGO (PBA/MX or PBA/rGO) via an in situ transformation from ultrathin layered double hydroxides (LDH) nanosheets. 2D conductive nanosheets allow for fast electron transport and guarantee the full utilization of PBA even at high rates; at the meantime, PBA nanoparticles effectively prevent 2D materials from restacking and facilitate rapid ion diffusion. The optimized Ni0.8Mn0.2-PBA/MX as an anode for lithium-ion batteries (LIBs) delivers a capacity of 442 mAh g-1 at 0.1 A g-1 and an excellent cycling robustness in comparison with bare PBA bulk crystals. We believe that this study offers an alternative choice for rationally designing PBA-based electrode materials for energy storage.

11.
J Colloid Interface Sci ; 612: 772-781, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032928

RESUMEN

Rational design of layered double hydroxide (LDH) electrodes is of great significance for high-performance supercapacitors (SCs). Herein, ultrathin cobalt-nickel-magnesium layered double hydroxide (CoNiMg-LDH) nanosheets with plentiful oxygen vacancies are synthesized via sacrificial magnesium-based replacement reaction at room temperature. Self-doping and mild reduction of magnesium can significantly increase the concentration of oxygen vacancies in CoNiMg-LDH, which promotes the electrochemical charge transfer efficiency and enhances the adsorption ability of electrolytes. Density functional theory (DFT) calculations also indicate that Mg2+ doping can decrease the formation energy of oxygen vacancies in CoNiMg-LDH nanosheets, which increases the concentration of oxygen vacancies. Thus, the assembled asymmetric supercapacitor CoNiMg-LDH//Actived Carbon accomplishes a superior capacity of âˆ¼ 333 C g-1 (208 F g-1) at 1 A g-1 and presents a gravimetric energy density of 73.9 Wh kg-1 at 0.8 kW kg-1. It presents only 13% capacity loss at 20 A g-1 after 5000 cycles. This discovery emphasizes the positive role of magnesium in regulating oxygen vacancies to improve the performance of supercapacitors, which should be beneficial for extending the scope of superior SCs active materials.

12.
Cancer Lett ; 524: 42-56, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582976

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has the highest fatality rate of any solid tumor, with a five-year survival rate of only 10% in the USA. PDAC is characterized by early metastasis. More than 50% of patients present with distant metastases at the time of diagnosis, and the majority of patients will develop metastasis within 4 years after tumor resection. Despite extensive studies, the molecular mechanisms underlying PDAC metastasis remain unclear. The polyoma enhancer activator protein (PEA3) subfamily was reported to play a vital role in the initiation and progression of multiple tumors. Herein, we found that ETS variant 4 (ETV4) was highly expressed in PDAC tissues and associated with poor survival. Univariate and multivariate analyses revealed that ETV4 expression was an independent prognostic factor for patient survival. Further experiments showed that ETV4 overexpression promoted PDAC invasion and metastasis both in vitro and in vivo. For the first time, we demonstrated that, mechanistically, ETV4 increased CXCR5 expression by directly binding to the CXCR5 promoter region. Knockdown of CXCR5 significantly reversed ETV4-mediated PDAC migration and invasion, while CXCR5 overexpression exerted the opposite effects. Intriguingly, we found that CXCL13, a specific ligand of CXCR5, increased ETV4 expression and promoted PDAC invasion and metastasis by activating the ERK1/2 pathway. ETV4 knockdown significantly abrogated the enhanced migratory and invasive abilities induced by the CXCL13/CXCR5 axis. In addition, a CXCR5 neutralizing antibody disrupted the CXCL13/ETV4/CXCR5 positive feedback loop and inhibited cell migration and invasion. Overall, in this study, we demonstrated that ETV4 plays a vital role in PDAC metastasis and defined a novel CXCL13/ETV4/CXCR5 positive feedback loop. Targeting this pathway has implications for potential therapeutic strategies for PDAC treatment.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Quimiocina CXCL13/genética , Proteínas Proto-Oncogénicas c-ets/genética , Receptores CXCR5/genética , Adenocarcinoma/patología , Adulto , Anciano , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal/genética
14.
Life Sci ; 277: 119592, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33984363

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the common malignancies worldwide. Slit-Robo GTPase-activating proteins (SRGAPs) have been shown to regulate the occurrence and development of various tumors. However, their specific roles in HCC remain elusive. METHODS: The expression pattern, genetic alteration and prognostic value of SRGAPs in HCC are analyzed by bioinformatics tools. The biological functions of SRGAP2 in HCC cells are demonstrated by in vitro experiments. The high-throughput RNA sequencing is conducted to explore the underlying molecular mechanisms of SRGAP2 in HCC cells. RESULTS: The expression levels of SRGAP1 and SRGAP2 are significantly elevated in HCC tissues compared to the normal both in Oncomine and TCGA datasets, and SRGAP2 are dramatically upregulated both in mRNA and protein levels. Moreover, higher SRGAP2 is significantly related to the clinical stages of HCC. Meanwhile, SRGAP2 might be an independent prognostic indicator, as it correlates negatively with the clinical outcomes of HCC patients. Further SRGAP2-silencing experiments imply that SRGAP2 might remarkably promote the migration and invasion of HCC cells in an EMT-independent pattern. Based on the high-throughput RNA sequencing of SRGAP2-knockdown HCC cells, enrichment and network analyses demonstrate that SRGAP2 is closely associated with cellular metabolic signaling. CONCLUSIONS: Our study firstly illustrates the crucial role of SRGAP2 in the metastasis of HCC and explores its underlying molecular mechanisms. We identify SRGAP2 as a promising prognostic biomarker and a novel therapeutic target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas Activadoras de GTPasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , China , Bases de Datos Genéticas , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad , Pronóstico , Transducción de Señal/genética
15.
Onco Targets Ther ; 14: 2541-2553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33880033

RESUMEN

BACKGROUND: Our previous studies demonstrate that ARL4C is the most critical clinical biomarker for gastric cancer (GC) patients among ARL family members (ARLs) and functions as an oncogene in GC. However, its underlying mechanisms in GC need to be further illustrated. In this study, we aim to explore the upstream and downstream molecular mechanisms of ARL4C in GC cells. METHODS: The genetic alteration of ARL4C in GC is analyzed by cBioPortal database. Potential ARL4C-targeted microRNAs (miRs) are predicted by three databases. The high-throughput RNA sequencing is performed to explore the underlying mechanisms of ARL4C in GC cells. The effects of predicted microRNAs on ARL4C, the RNA-sequencing results validation and the biological functions of ARL4C in GC cells are illustrated by in vitro experiments. RESULTS: Genetic analyses indicate that ARL4C is significantly upregulated in GC, which is not caused by gene amplification. MicroRNAs prediction shows the high relevance between ARL4C and miR-302 members. Moreover, miR-302c or miR-302d transfection reduces ARL4C protein expression in GC cells. Based on the high-throughput RNA sequencing of ARL4C-knockdown cells, enrichment analyses demonstrate that ARL4C is closely related to cell growth and involved in p53 signaling. Moreover, there are strong gene-gene interactions between ARL4C and genes in p53 signaling, and ARL4C downregulation could inhibit the protein expression of MDM2, a critical gene in p53 pathway. Further functional experiments demonstrate that ARL4C silencing leads to cell cycle arrest and increased cell apoptosis in AGS and MKN45 cells. CONCLUSION: Our data suggest that miR-302c and miR-302d may function as the upstream regulators of ARL4C. And, ARL4C might promote GC cell cycle progression via regulating p53 signaling. Our findings provide novel insights into the key role of ARL4C and the underlying mechanisms in GC progression, thus facilitating the development of ARL4C-targeted therapy.

16.
J Cancer ; 12(8): 2456-2464, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33758622

RESUMEN

Endoplasmic reticulum resident protein 57 (ERp57) has a molecular weight of 57 kDa, belongs to the protein disulfide-isomerase (PDI) family, and is primarily located in the endoplasmic reticulum (ER). ERp57 functions in the quality control of nascent synthesized glycoproteins, participates in major histocompatibility complex (MHC) class I molecule assembly, regulates immune responses, maintains immunogenic cell death (ICD), regulates the unfolded protein response (UPR), functions as a 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) receptor, regulates the NF-κB and STAT3 pathways, and participates in DNA repair processes and cytoskeletal remodeling. Recent studies have reported ERp57 overexpression in various human cancers, and altered expression and aberrant functionality of ERp57 are associated with cancer growth and progression and changes in the chemosensitivity of cancers. ERp57 may become a potential biomarker and therapeutic target to combat cancer development and chemoresistance. Here, we summarize the available knowledge of the role of ERp57 in cancer and the underlying mechanisms.

17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(12): 1594-1601, 2020 Dec 15.
Artículo en Chino | MEDLINE | ID: mdl-33319542

RESUMEN

OBJECTIVE: Based on the cell-extracellular matrix adhesion theory in selective cell retention (SCR) technology, demineralized bone matrix (DBM) modified by simplified polypeptide surface was designed to promote both bone regeneration and angiogenesis. METHODS: Functional peptide of α4 chains of laminin protein (LNα4), cyclic RGDfK (cRGD), and collagen-binding domain (CBD) peptides were selected. CBD-LNα4-cRGD peptide was synthesized in solid phase and modified on DBM to construct DBM/CBD-LNα4-cRGD scaffold (DBM/LN). Firstly, scanning electron microscope and laser scanning confocal microscope were used to examine the characteristics and stability of the modified scaffold. Then, the adhesion, proliferation, and tube formation properties of CBD-LNα4-cRGD peptide on endothelial progenitor cells (EPCs) were detected, respectively. Western blot method was used to verify the molecular mechanism affecting EPCs. Finally, 24 10-week-old male C57 mice were used to establish a 2-mm-length defect of femoral bone model. DBM/LN and DBM scaffolds after SCR treatment were used to repair bone defects in DBM/LN group ( n=12) and DBM group ( n=12), respectively. At 8 weeks after operation, the angiogenesis and bone regeneration ability of DBM/LN scaffolds were evaluated by X-ray film, Micro-CT, angiography, histology, and immunofluorescence staining [CD31, endomucin (Emcn), Ki67]. RESULTS: Material related tests showed that the surface of DBM/LN scaffold was rougher than DBM scaffold, but the pore diameter did not change significantly ( t=0.218, P=0.835). After SCR treatment, DBM/LN scaffold was still stable and effective. Compared with DBM scaffold, DBM/LN scaffold could adhere to more EPCs after the surface modification of CBD-LNα4-cRGD ( P<0.05), and the proliferation rate and tube formation ability increased. Western blot analysis showed that the relative expressions of VEGF, phosphorylated FAK (p-FAK), and phosphorylated ERK1/2 (p-ERK1/2) proteins were higher in DBM/LN than in DBM ( P<0.05). In the femoral bone defect model of mice, it was found that mice implanted with DBM/LN scaffold had stronger angiogenesis and bone regeneration capacity ( P<0.05), and the number of CD31 hiEmcn hi cells increased significantly ( P<0.05). CONCLUSION: DBM/LN scaffold can promote the adhesion of EPCs. Importantly, it can significantly promote the generation of H-type vessels and realize the effective coupling between angiogenesis and bone regeneration in bone defect repair.


Asunto(s)
Matriz Ósea , Osteogénesis , Animales , Regeneración Ósea , Laminina , Masculino , Ratones , Péptidos , Andamios del Tejido
18.
Nanoscale ; 12(43): 22075-22081, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33140810

RESUMEN

Flexible energy storage devices with ultrahigh areal capacity and excellent cycling stability are highly desired for portable and wearable electronics. Bimetal hydroxides with low crystallinity are preferred as electrode materials due to their advantageous features of high electrochemical performance, rapid ion diffusion and high structure stability enabled by lattice disorder. Herein, holey NiMn-hydroxide (NiMn-OH) nanosheets with abundant lattice disorder induced by Jahn-Teller distortion are grown vertically on carbon cloth and their loading level reaches as high as 3.27 mg cm-2. The obtained NiMn-OH nanosheets demonstrate a superior capacity of 881 µAh cm-2 at 3 mA cm-2 and outstanding rate capability (66.4% capacity retained at 30 mA cm-2). The flexible all-solid hybrid device (NiMn-OH//Fe2O3) delivers a high energy density of 573.8 µW h cm-2 at a power density of 2.4 mW cm-2 and more importantly exhibits good cycling stability with 90.1% retained after 10 000 cycles and mechanical robustness. This proof-of-principle investigation is opening up a viable way to develop high performance electrodes for flexible energy storage devices.

19.
Biomark Med ; 14(11): 1031-1045, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32940073

RESUMEN

Progress on glycosylation and tumor markers has not been extensively reported. Glycosylation plays an important part in post-translational modification. Previous research on glycosylation-modified biomarkers has lagged behind due to insufficient understanding of glycosylation-related regulations. However, some new methods and ideas illustrated in recent research may provide new inspirations in the field. This article aims to review current advances in revealing relationship between tumors and abnormal N-glycosylation and discuss leading-edge applications of N-glycosylation in developing novel tumor biomarkers.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo , Glicosilación , Humanos , Procesamiento Proteico-Postraduccional
20.
Theranostics ; 10(21): 9830-9842, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32863962

RESUMEN

It is universally accepted that aberrant metabolism facilitates tumor growth. However, how cancer cells coordinate glucose metabolism and tumor proliferation is largely unknown. Sine oculis homeobox homolog 1 (SIX1) is a transcription factor that belongs to the SIX family and is believed to play an important role in the regulation of the Warburg effect in tumors. However, whether the role of SIX1 and the molecular mechanisms that regulate its activity are similar in hepatocellular carcinoma (HCC) still needs further investigation. Methods: Western blotting was performed to determine the levels of SIX1 and O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) in HCC tissues. Cell Counting Kit 8 (CCK8), colony formation and mouse tumor model assays were used to establish the role of SIX1 and O-GlcNAcylation in HCC processes. Mass spectrometry, immunoprecipitation and site-directed mutagenesis were performed to confirm the O-GlcNAcylation of SIX1. Results: Here, we demonstrated that SIX1, the key transcription factor regulating the Warburg effect in cancer, promotes HCC growth in vitro and in vivo. Furthermore, we revealed that SIX1 could also enhance the levels of a posttranslational modification called O-GlcNAcylation. Importantly, we found that SIX1 was also highly modified by O-GlcNAcylation and that O-GlcNAcylation inhibited the ubiquitination degradation of SIX1. In addition, site-directed mutagenesis at position 276 (T276A) decreased the O-GlcNAcylation level and reversed the protumor effect of SIX1. Conclusions: We conclude that O-GlcNAcylation of SIX1 enhances its stability and promotes HCC proliferation. Our findings illustrate a novel feedback loop of SIX1 and O-GlcNAcylation and show that O-GlcNAcylation of SIX1 is an important way to coordinate glucose metabolism and tumor progression.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Proteínas de Homeodominio/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Procesamiento Proteico-Postraduccional/genética , Factores de Transcripción/genética , Ubiquitinación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...