Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
ACS Omega ; 9(5): 5395-5405, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343937

RESUMEN

Highly fluorinated [(F6acac)Pd(µ-HNC6F5)]2 was prepared by the reaction of palladium bis(hexafluoroacetylacetonate), Pd(F6acac)2, with pentafluoroaniline. This compound generates a large family of crystalline polymorphs and solvates. In this paper, we present a study on the synthesis, solution phase dynamics, and crystal structures of highly fluorinated [(F6acac)Pd(µ-HNC6F5)]2. Pd3(µ-F6acac)2(µ-HNC6F5)4 is produced as a minor byproduct. We also describe the synthesis and structural characterization of trinuclear Pd3(µ-F6acac)3[µ-(CF3)2C=N]3 prepared by the reaction of Pd(F6acac)2 with hexafluoroacetone imine.

2.
Chemistry ; 29(68): e202302339, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37615829

RESUMEN

The prevalence of anion-cation contacts in biomolecular recognition under aqueous conditions suggests that ionic interactions should dominate the binding of anions in solvents across both high and low polarities. Investigations of this idea using titrations in low polarity solvents are impaired by interferences from ion pairing that prevent a clear picture of binding. To address this limitation and test the impact of ion-ion interactions across multiple solvents, we quantified chloride binding to a cationic receptor after accounting for ion pairing. In these studies, we created a chelate receptor using aryl-triazole CH donors and a quinolinium unit that directs its cationic methyl inside the binding pocket. In low-polarity dichloromethane, the 1 : 1 complex (log K1 : 1 ~ 7.3) is more stable than neutral chelates, but fortuitously comparable to a preorganized macrocycle (log K1 : 1 ~ 6.9). Polar acetonitrile and DMSO diminish stabilities of the charged receptor (log K1 : 1 ~ 3.7 and 1.9) but surprisingly 100-fold more than the macrocycle. While both receptors lose stability by dielectric screening of electrostatic stability, the cationic receptor also pays additional costs of organization. Thus even though the charged receptor has stronger binding in apolar solvents, the uncharged receptor has more anion affinity in polar solvents.


Asunto(s)
Agua , Solventes , Aniones/química , Agua/química
3.
Int J Surg Case Rep ; 110: 108668, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37603912

RESUMEN

INTRODUCTION: Intestinal lipoma is a rare benign tumor with a reported incidence of 0.2 % to 4.4 %. It is seen mainly in patients aged 50 to 70 years. Intestinal lipoma as a pathological lead point of intussusception is rare. There are few reports of colic lipoma in children. PRESENTATION OF CASE: We reported a 7-year-old girl with a 4-year history of intermittent abdominal pain. Ultrasound examination showed a homogeneous hyperechoic mass near the distal transverse colon, which was similar to the surrounding lipid tissue. Histopathological examination confirmed the diagnosis of intestinal lipoma. DISCUSSION: Colonic lipoma is very rare in children. If intussusception occurs repeatedly, or if it occurs in older children, we should consider the presence of pathological lead point. Early diagnosis and immediate surgical intervention are the key factors to a successful outcome. CONCLUSION: In this case we report a pediatric case of intussusception secondary to colonic lipoma, and describe imaging and pathologic signs suggestive of intestinal lipoma.

4.
J Am Chem Soc ; 144(38): 17680-17691, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36106902

RESUMEN

Photochemical dearomative cycloaddition has emerged as a useful strategy to rapidly generate molecular complexity. Within this context, stereo- and regiocontrolled intermolecular para-cycloadditions are rare. Herein, a method to achieve photochemical cycloaddition of quinolines and alkenes is shown. Emphasis is placed on generating sterically congested products and reaction of highly substituted alkenes and allenes. In addition, the mechanistic details of the process are studied, which revealed a reversible radical addition and a selectivity-determining radical recombination. The regio- and stereochemical outcome of the reaction is also rationalized.


Asunto(s)
Alquenos , Quinolinas , Alquenos/química , Catálisis , Reacción de Cicloadición , Estructura Molecular
5.
Biomed Mater ; 17(2)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35026740

RESUMEN

The design of bone scaffolds is predominately aimed to well reproduce the natural bony environment by imitating the architecture/composition of host bone. Such biomimetic biomaterials are gaining increasing attention and acknowledged quite promising for bone tissue engineering. Herein, novel biomimetic bone scaffolds containing decellularized small intestinal submucosa matrix (SIS-ECM) and Sr2+/Fe3+co-doped hydroxyapatite (SrFeHA) are fabricated for the first time by the sophisticated self-assembled mineralization procedure, followed by cross-linking and lyophilization post-treatments. The results indicate the constructed SIS/SrFeHA scaffolds are characterized by highly porous structures, rough microsurface and improved mechanical strength, as well as efficient releasing of bioactive Sr2+/Fe3+and ECM components. These favorable physico-chemical properties endow SIS/SrFeHA scaffolds with an architectural/componential biomimetic bony environment which appears to be highly beneficial for inducing angiogenesis/osteogenesis bothin vitroandin vivo. In particular, the cellular functionality and bioactivity of endotheliocytes/osteoblasts are significantly enhanced by SIS/SrFeHA scaffolds, and the cranial defects model further verifies the potent ability of SIS/SrFeHA to acceleratein vivovascularization and bone regeneration following implantation. In this view these results highlight the considerable angiogenesis/osteogenesis potential of biomimetic porous SIS/SrFeHA scaffolds for inducing bone regeneration and thus may afford a new promising alternative for bone tissue engineering.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Matriz Extracelular Descelularizada , Durapatita , Osteogénesis/efectos de los fármacos , Andamios del Tejido/química , Animales , Materiales Biomiméticos , Línea Celular , Células Cultivadas , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Durapatita/química , Durapatita/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mucosa Intestinal/citología , Intestino Delgado/citología , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Porosidad
6.
Chem Sci ; 12(31): 10664-10672, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34447560

RESUMEN

The syntheses of (DIM)Ni(NO3)2 and (DIM)Ni(NO2)2, where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin)2. Single deoxygenation of (DIM)Ni(NO2)2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ1-ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)]2, where the dimer is linked through a Ni-Ni bond. The lost reduced nitrogen byproduct is shown to be N2O, indicating N-N bond formation in the course of the reaction. Isotopic labelling studies establish that the N-N bond of N2O is formed in a bimetallic Ni2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N-N bond formation. The [(DIM)Ni(NO)]2 dimer is susceptible to oxidation by AgX (X = NO3 -, NO2 -, and OTf-) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N2O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N2O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO- bridging ligand.

7.
Exp Ther Med ; 22(1): 736, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34055053

RESUMEN

Bcl-xL is a transmembrane molecule in the mitochondria, with apoptosis-related and pro-metabolic functions, that also plays a role in chondrogenesis and differentiation. A Bcl-xL mutant, in which the GRI sequence is replaced by ELN, has no anti-apoptotic effect, while other biological functions of this mutant remain unchanged. The present study investigated the impact of this Bcl-xL mutant on cartilage differentiation and the expression levels of TGF-ß and bone morphogenetic protein (BMP). Human bone marrow mesenchymal stem cells (BMSCs) were transfected with Bcl-xL and Bcl-xL mutant (∆Bcl-xL) overexpression vectors. The cells were divided into four groups: Control (not subjected to any transfection), EV (empty pcDNA3.1-Bcl-xL vector), OV (Bcl-xL overexpression) and ∆OV (∆Bcl-xL overexpression). Saffron and toluidine blue staining was performed to observe cartilage tissue formation. Flow cytometry was conducted to measure BMSC apoptosis. The expression levels of TGF-ß and BMP were evaluated using reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Compared with that in the control group, the expression levels of Bcl-xL in the OV group increased significantly (P<0.05). Western blotting and RT-qPCR results revealed that OV and ∆OV treatment increased the expression levels of TGF-ß and BMP in transfected cells, compared to their expression in the control and EV groups (P<0.05). Saffron and toluidine blue staining results showed that cartilage formation was increased in the ∆OV and ∆OV + Bax-/Bak-groups to similar degrees. Cell apoptosis in the ∆OV group did not change compared with that in the control group. The Bcl-xL mutant promoted cartilage differentiation of BMSCs and upregulated TGF-ß/BMP expression. This enhancement of chondrogenic differentiation was not related to the expression of Bax and Bak. Taken together, these findings provided for improved application of bone tissue engineering technology in the treatment of articular cartilage defects.

8.
Exp Ther Med ; 21(4): 354, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33732327

RESUMEN

4-Hexylresorcinol (4HR) is a small organic compound that is widely used as an antiseptic and antioxidant. In the present study, its role in osteoclastogenesis was investigated. Bone marrow-derived macrophages from mice were used to examine the role of 4HR in osteogenesis. An ovariectomy (OVX) mouse model was constructed to examine the effect of 4HR in vivo, followed by hematoxylin and eosin and tartrate resistant acid phosphatase staining. In the present study, 4HR effectively suppressed receptor activator of NF-κB ligand-induced osteoclastogenesis in a dose-dependent manner. 4HR was also found to significantly suppress the expression of osteoclast (OC)-specific markers, including tartrate-resistant acid phosphatase, cathepsin K, nuclear factor of activated T-cell cytoplasmic 1 and c-Fos in the presence of RANKL in BMMs. Furthermore, 4HR inhibited osteoclastogenesis by inhibiting the activation of the NF-κB signaling pathway in BMMs. Consistent with the in vitro results, 4HR effectively ameliorated OVX-induced bone loss and markedly reduced OC number in the proximal tibia in vivo. In conclusion, the present results suggested that 4HR inhibited osteoclastogenesis in vitro and rescued bone loss in vivo, suggesting that 4HR may serve as a novel therapeutic agent for osteoporosis treatment.

9.
J Org Chem ; 86(6): 4532-4546, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33636075

RESUMEN

The recognition of substituted phosphates underpins many processes including DNA binding, enantioselective catalysis, and recently template-directed rotaxane synthesis. Beyond ATP and a few commercial substrates, however, little is known about how substituents effect organophosphate recognition. Here, we examined alcohol substituents and their impact on recognition by cyanostar macrocycles. The organophosphates were disubstituted by alcohols of various chain lengths, dipropanol, dihexanol, and didecanol phosphate, each accessed using modular solid-phases syntheses. Based on the known size-selective binding of phosphates by π-stacked dimers of cyanostars, threaded [3]pseudorotaxanes were anticipated. While seen with butyl substituents, pseudorotaxane formation was disrupted by competitive OH···O- hydrogen bonding between both terminal hydroxyls and the anionic phosphate unit. Crystallography also showed formation of a backfolded propanol conformation resulting in an 8-membered ring and a perched cyanostar assembly. Motivated by established entropic penalties accompanying ring formation, we reinstated [3]pseudorotaxanes by extending the size of the substituent to hexanol and decanol. Chain entropy overcomes the enthalpically favored OH···O- contacts to favor random-coil conformations required for seamless, high-fidelity threading of dihexanol and didecanol phosphates inside cyanostars. These studies highlight how chain length and functional groups on phosphate's substituents can be powerful design tools to regulate binding and control assembly formation during phosphate recognition.


Asunto(s)
Rotaxanos , Entropía , Enlace de Hidrógeno , Conformación Molecular , Fosfatos
10.
ACS Cent Sci ; 6(9): 1572-1577, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999932

RESUMEN

The N2 analogue phosphorus nitride (PN) was the first phosphorus-containing compound to be detected in the interstellar medium; however, this thermodynamically unstable compound has a fleeting existence on Earth. Here, we show that reductive coupling of iron(IV) nitride and molybdenum(VI) phosphide complexes assembles PN as a bridging ligand in a structurally characterized bimetallic complex. Reaction with C≡N t Bu releases the mononuclear complex [(N3N)Mo-PN]-, N3N = [(Me3SiNCH2CH2)3N]3-), which undergoes light-induced linkage isomerization to provide [(N3N)Mo-NP]-, as revealed by photocrystallography. While structural and spectroscopic characterization, supported by electronic structure calculations, reveals the PN multiple bond character, coordination to molybdenum induces a nucleophilic character at the terminal atom of the PN/NP ligands. Indeed, the linkage isomers can be trapped in solution by reaction with a Rh(I) electrophile.

11.
Biomed Res Int ; 2020: 1481572, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32908868

RESUMEN

OBJECTIVE: To investigate the effects of HuR protein on the treatment of chronic lymphocytic leukemia (CLL). METHODS: LCL lymphoblast cells and B lymphocytes were subjected to HuR overexpression (OV) or interference (IV). Western blot was used to observe the protein expression of human tumor necrosis factor-associated factor 1 (TRAF1), human inhibitor of nuclear factor kappa-B kinase α (IKK-α), NF-κB-inducing kinase (NIK), and p52. Flow cytometry was performed to evaluate apoptosis, and the mRNA expression of TRAF1 was examined by quantitative reverse transcription polymerase chain reaction. Immunofluorescence was carried out to visualize the expression of HuR, and the relationship between HuR and TRAF1 was observed by pull-down test. Cell sensitivity to chlorambucil (CLB) and fludarabine (Flu) was assessed by Cell Counting Kit-8. RESULTS: The expression of HuR and TRAF1 in LCLs was significantly increased compared to that in B lymphocytes. Compared with the control, HuR OV significantly increased the expression of TRAF1 (P < 0.05), whereas it was significantly decreased in the IV group (P < 0.05). HuR can bind to TRAF1 directly, and the binding rate is positively correlated with HuR expression. After inhibiting HuR, the expression of TRAF1, IKK-α, NIK, p52, pro-Caspase 3, and PARP was significantly upregulated in LCLs and B lymphocytes (P < 0.05), while Caspase 3 was downregulated (P < 0.05). Compared with the control, the proliferation of LCLs and B lymphocytes treated by CLB and Flu decreased significantly after HuR blockade (P < 0.05). CONCLUSION: HuR may be a key protein regulating CLL resistance. After inhibiting HuR, inflammatory response and apoptosis were significantly increased, and the cell sensitivity to CLB and Flu increased, suggesting that inhibiting HuR activity may be a potential strategy to solve the problem of drug resistance in CLL cells.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , FN-kappa B/metabolismo , Antineoplásicos/farmacología , Apoptosis , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clorambucilo/farmacología , Resistencia a Antineoplásicos , Proteína 1 Similar a ELAV/antagonistas & inhibidores , Proteína 1 Similar a ELAV/genética , Humanos , Quinasa I-kappa B/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Factor 1 Asociado a Receptor de TNF/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Vidarabina/análogos & derivados , Vidarabina/farmacología , Quinasa de Factor Nuclear kappa B
12.
J Org Chem ; 85(16): 10658-10669, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32687355

RESUMEN

The electrochemistry of flavone (1) has been carefully investigated at glassy carbon cathodes in dimethylformamide containing 0.10 M tetra-n-butylammonium tetrafluoroborate as supporting electrolyte. In this medium, a cyclic voltammogram for a reduction of 1 exhibits a reversible cathodic process (Epc = -1.58 V and Epa = -1.47 V vs SHE) that is followed by an irreversible cathodic peak (Epc = -2.17 V vs SHE). When water (5.0 M) is introduced into the medium, the first peak for 1 becomes irreversible (Epc = -1.56 V vs SHE), and the second (irreversible) peak shifts to -2.07 V vs SHE. Bulk electrolyses of 1 at -1.60 V vs SHE afford flavanone, 2'-hydroxychalcone, 2'-hydroxy-3-phenylpropionate, and two new compounds, namely (Z)-1,6-bis(2-hydroxyphenyl)-3,4-diphenylhex-3-ene-1,6-dione (D1) and (Z)-2,2'-(1,2-diphenylethene-1,2-bis(benzofuran-3(2H))-one) (D2), obtained in significant amounts, that were characterized by means of 1H and 13C NMR spectrometry as well as single-crystal X-ray diffraction. Along with the above findings, we have proposed a mechanism for the electroreduction of 1, which has been further corroborated by our quantum mechanical study.

13.
Nano Lett ; 20(4): 2821-2828, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32105491

RESUMEN

A central theme of nanocrystal (NC) research involves synthesis of dimension-controlled NCs and studyof size-dependent scaling laws governing their optical, electrical, magnetic, and thermodynamic properties. Here, we describe the synthesis of monodisperse CdO NCs that exhibit high quality-factor (up to 5.5) mid-infrared (MIR) localized surface plasmon resonances (LSPR) and elucidate the inverse scaling relationship between carrier concentration and NC size. The LSPR wavelength is readily tunable between 2.4 and ∼6.0 µm by controlling the size of CdO NCs. Structural and spectroscopic characterization provide strong evidence that free electrons primarily originate from self-doping due to NC surface-induced nonstoichiometry. The ability to probe and to control NC stoichiometry and intrinsic defects will pave the way toward predictive synthesis of doped NCs with desirable LSPR characteristics.

14.
RSC Med Chem ; 11(3): 411-418, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479646

RESUMEN

ATP binding cassette transporter A1 (ABCA1) is a critical transporter that mediates cellular cholesterol efflux from macrophages to apolipoprotein A-I (ApoA-I). Therefore, increasing the expression level of ABCA1 is anti-atherogenic and ABCA1 expression upregulators have become novel choices for atherosclerosis treatment. In this study, a series of N-benzothiazolyl-2-benzenesulfonamides, based on the structure of WY06 discovered in our laboratory, were designed and synthesized as novel ABCA1 expression upregulators. Based on an in vitro ABCA1 upregulatory cell model, ABCA1 upregulation of target compounds was evaluated. Compounds 6c, 6d, and 6i have good upregulated ABCA1 expression activities, with EC50 values of 0.97, 0.37, and 0.41 µM, respectively. A preliminary structure-activity relationship is summarized. Replacing the methoxy group on the benzothiazole moiety of WY06 with a fluorine or chlorine atom and exchanging the ester group with a cyano group resulted in more potent ABCA1 upregulating activity. Moreover, compound 6i increased ABCA1 mRNA and protein expression and significantly promoted cholesterol efflux in RAW264.7 cells. In conclusion, N-benzothiazolyl-2-benzenesulfonamides were identified as novel ABCA1 expression upregulators.

15.
Org Biomol Chem ; 18(3): 431-440, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31850445

RESUMEN

Amines are ubiquitous in the chemical industry and are present in a wide range of biological processes, motivating the development of amine-sensitive sensors. There are many turn-on amine sensors, however there are no examples of turn-on sensors that utilize the amine's ability to react by single electron transfer (SET). We investigated a new turn-on amine probe with a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore. BODIPY fluorescence is first preprogrammed into an off state by internal photoinduced electron transfer (PET) to an electron-deficient quinolinium ring, resulting in fluorescence quenching. At low concentrations of aliphatic amine (0 to 10 mM), this PET pathway is shut down by external SET from the amine to the photoexcited charge-transfer state of the probe and the fluorescence is turned on. At high concentrations of amine (50 mM to 1 M), we observed collisional quenching of the BODIPY fluorescence. The probe is selective for aliphatic amines over aromatic amines, and aliphatic thiols or alcohols. The three molecular processes modulate the BODIPY fluorescence in a multi-mechanistic way with two of them producing a direct response to amine concentrations. The totality of the three molecular processes produced the first example of a multi-state and dose-responsive amine sensor.


Asunto(s)
Aminas/análisis , Compuestos de Boro/química , Colorantes Fluorescentes/química , Compuestos de Quinolinio/química , Compuestos de Boro/síntesis química , Teoría Funcional de la Densidad , Fluorescencia , Colorantes Fluorescentes/síntesis química , Modelos Químicos , Compuestos de Quinolinio/síntesis química , Espectrometría de Fluorescencia/métodos
16.
Inorg Chem ; 59(1): 579-583, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31876412

RESUMEN

The nitride ligand in iron(IV) complex PhB(MesIm)3Fe≡N reacts with excess H3SiPh to afford PhB(MesIm)3Fe(µ-H)3(SiHPh) as the major product, which has been structurally and spectroscopically characterized. Bulkier silane HaSiPh2 provides iron(II) amido complex PhB(MesIm)3FeN(H)(SiHPh2) as the initial product of the reaction, with excess H2SiPh2 affording diamagnetic PhB(MesIm)3Fe(µ-H)3(SiPh2) as the major product. Unobserved iron(II) hydride PhB(MesIm)3Fe-H is implicated as an intermediate in this reaction, as suggested by the results of the reaction between iron(II) amido PhB(MesIm)3FeN(H)tBu and H3SiPh, which provides PhB(MesIm)3Fe(H)(µ-H)2(Si(NHtBu)Ph) as the sole product.

17.
Nat Commun ; 10(1): 1394, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30918244

RESUMEN

Metal-oxide nanocrystals doped with aliovalent atoms can exhibit tunable infrared localized surface plasmon resonances (LSPRs). Yet, the range of dopant types and concentrations remains limited for many metal-oxide hosts, largely because of the difficulty in establishing reaction kinetics that favors dopant incorporation by using the co-thermolysis method. Here we develop cation-exchange reactions to introduce p-type dopants (Cu+, Ag+, etc.) into n-type metal-oxide nanocrystals, producing programmable LSPR redshifts due to dopant compensation. We further demonstrate that enhanced n-type doping can be realized via sequential cation-exchange reactions mediated by the Cu+ ions. Cation-exchange transformations add a new dimension to the design of plasmonic nanocrystals, allowing preformed nanocrystals to be used as templates to create compositionally diverse nanocrystals with well-defined LSPR characteristics. The ability to tailor the doping profile postsynthetically opens the door to a multitude of opportunities to deepen our understanding of the relationship between local structure and LSPR properties.

18.
Eur Spine J ; 27(10): 2663, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30196419

RESUMEN

The authors declare that when writing their article [1] they referenced two previously published papers [2, 3]. Several sentences on pages 807, 808, and 813 were similar to sentences from these two previously published articles.

19.
J Org Chem ; 83(17): 10025-10036, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30067366

RESUMEN

The synthesis of a rigid macrobicyclic N,S lactam L1 and a topologically favored in/in N,S cryptand L2 are reported with X-ray structure analysis, dynamic correlation NMR spectroscopy, and computational analysis. Lactam L1 exhibits two distinct rotameric conformations (plus their enantiomeric counterparts) at 25 °C, as confirmed via NMR spectroscopy and computational analysis. Coalescence of the resonances of L1 was observed at 115 °C, allowing for complete nuclei to frequency correlation. Combining computational investigations with experimental data, topological equilibria and relative energies/strain relating to the perturbation of the pore were determined. Due to the increased conformational strain of the N2S2 template, the nitrogen lone pairs in L2 elicit a unique transannular interaction, resulting in a thermodynamically favored in/in nephroidal racemate. The combination of preferred topology, steric relief, and electronic localization of L2 induces a chiral environment imparted through the amine with a computed inversion barrier of 10.3 kcal mol-1.

20.
Chem Sci ; 9(22): 4950-4958, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29938022

RESUMEN

The cobalt macrocycle complex [Co(DIM)Br2]+ (DIM = 2,3-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,3-diene) is an electrocatalyst for the selective reduction of nitrate to ammonia in aqueous solution. The catalyst operates over a wide pH range and with very high faradaic efficiency, albeit with large overpotential. Experimental investigations, supported by electronic structure calculations, reveal that catalysis commences when nitrate binds to the two-electron reduced species CoII(DIM-), where cobalt and the macrocycle are each reduced by a single electron. Several mechanisms for the initial reduction of nitrate to nitrite were explored computationally and found to be feasible at room temperature. The reduced DIM ligand plays an important role in these mechanisms by directly transferring a single electron to the bound nitrate substrate, activating it for further reactions. These studies further reveal that the DIM macrocycle is critical to nitrate reduction, specifically its combination of redox non-innocence, hydrogen-bonding functionality and flexibility in coordination mode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...