Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1388903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895633

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy with historically high mortality rates. The treatment strategies for AML is still internationally based on anthracyclines and cytarabine, which remained unchanged for decades. With the rapid advance on sequencing technology, molecular targets of leukemogenesis and disease progression related to epigenetics are constantly being discovered, which are important for the prognosis and treatment of AML. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity and limited side effects. Several biologically active ingredients of TCM are effective against AML. This review focuses on bioactive compounds in TCM targeting epigenetic mechanisms to address the complexities and heterogeneity of AML.

2.
J Agric Food Chem ; 72(8): 3998-4007, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38372233

RESUMEN

Tomato wilt disease caused by Fusarium oxysporum f. sp. lycopersici (Fol) results in a decrease in tomato yield and quality. Pyraclostrobin, a typical quinone outside inhibitor (QoI), inhibits the cytochrome bc1 complex to block energy transfer. However, there is currently limited research on the effectiveness of pyraclostrobin against Fol. In this study, we determined the activity of pyraclostrobin against Fol and found the EC50 values for pyraclostrobin against 100 Fol strains (which have never been exposed to QoIs before). The average EC50 value is 0.3739 ± 0.2413 µg/mL, indicating a strong antifungal activity of pyraclostrobin against Fol, as shown by unimodal curves of the EC50 values. Furthermore, we generated five resistant mutants through chemical taming and identified four mutants with high-level resistance due to the Cytb-G143S mutation and one mutant with medium-level resistance due to the Cytb-G137R mutation. The molecular docking results indicate that the Cytb-G143S or Cytb-G137R mutations of Fol lead to a change in the binding mode of Cytb to pyraclostrobin, resulting in a decrease in affinity. The resistant mutants exhibit reduced fitness in terms of mycelial growth (25 and 30 °C), virulence, and sporulation. Moreover, the mutants carrying the Cytb-G143S mutation suffer a more severe fitness penalty compared to those carrying the Cytb-G137R mutation. There is a positive correlation observed among azoxystrobin, picoxystrobin, fluoxastrobin, and pyraclostrobin for resistant mutants; however, no cross-resistance was detected between pyraclostrobin and pydiflumetofen, prochloraz, or cyazofamid. Thus, we conclude that the potential risk of resistance development in Fol toward pyraclostrobin can be categorized as ranging from low to moderate.


Asunto(s)
Fusarium , Solanum lycopersicum , Estrobilurinas , Simulación del Acoplamiento Molecular , Fusarium/genética , Enfermedades de las Plantas/microbiología
3.
Sci Adv ; 10(1): eadk6130, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181075

RESUMEN

RNA editing in various organisms commonly restores RNA sequences to their ancestral state, but its adaptive advantages are debated. In fungi, restorative editing corrects premature stop codons in pseudogenes specifically during sexual reproduction. We characterized 71 pseudogenes and their restorative editing in Fusarium graminearum, demonstrating that restorative editing of 16 pseudogenes is crucial for germ tissue development in fruiting bodies. Our results also revealed that the emergence of premature stop codons is facilitated by restorative editing and that premature stop codons corrected by restorative editing are selectively favored over ancestral amino acid codons. Furthermore, we found that ancestral versions of pseudogenes have antagonistic effects on reproduction and survival. Restorative editing eliminates the survival costs of reproduction caused by antagonistic pleiotropy and provides a selective advantage in fungi. Our findings highlight the importance of restorative editing in the evolution of fungal complex multicellularity and provide empirical evidence that restorative editing serves as an adaptive mechanism enabling the resolution of genetic trade-offs.


Asunto(s)
Codón sin Sentido , Magnoliopsida , Edición de ARN/genética , Aminoácidos , Reproducción
4.
Nanotechnology ; 34(15)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36649649

RESUMEN

Battery safety calls for solid state batteries and how to prepare solid electrolytes with excellent performance are of significant importance. In this study, hybrid solid electrolytes combined with organic PVDF-HFP and inorganic active fillers are studied. The modified active fillers of Li7-x-3yAlyLa3Zr2-xTaxO12are obtained by co-element doping with Al and Ta when LLZO is synthesized by calcination. And an high room temperature ionic conductivity of 5.357 × 10-4S cm-1is exhibited by ATLLZO ceramic sheet. The composite solid electrolyte PVDF-HFP/LiTFSI/ATLLZO (PHL-ATLLZO) is prepared by solution casting method, and its electrochemical properties are investigated. The results show that when the contents of lithium salt LiTFSI and active filler ATLLZO are controlled at 40 wt% and 10%, respectively, the ionic conductivity of the resulting composite solid electrolyte is as high as 2.686 × 10-4S cm-1at room temperature, and a wide electrochemical window of 4.75 V is exhibited. The LiFePO4/PHL-ATLLZO/Li all-solid-state battery assembled based on the composite solid-state electrolyte exhibits excellent cycling stability at room temperature. The cell assembled by casting the composite solid-state electrolyte on the cathode surface shows a discharge specific capacity of 134.3 mAh g-1and 96.2% capacity retention after 100 cycles at 0.2 C. The prepared composite solid-state electrolyte demonstrates excellent electrochemical performance.

5.
Plant Dis ; 107(6): 1925-1928, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36510423

RESUMEN

Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, results in severe yield and quality losses of cereal crops in many arid and semiarid areas of the world. Limited information about the genome of F. pseudograminearum restricts the pathogenesis research and breeding of disease-resistant wheat varieties. In this study, a high-quality genome assembly of F. pseudograminearum isolate Fp22-2 was generated using Oxford Nanopore long-read sequencing technology. The assembled nuclear genome of Fp22-2 is 37.33 Mb with a repeat content of 3.69% and is divided into four contigs with a k-mer completeness score of 97.2% and a base quality accuracy of >99.99%. A total of 14,475 protein-coding genes (BUSCO completeness score, 99.9%) were predicted and functionally annotated. Moreover, genes encoding pathogenic proteins, including effector proteins and carbohydrate-active enzymes, and secondary metabolic gene clusters were identified. Overall, the high-quality genome assembly and gene annotation provided here will allow further investigation of the biology of F. pseudograminearum and lead to the development of new control options for FCR.


Asunto(s)
Fusarium , Nanoporos , Fusarium/genética , Fitomejoramiento , Secuenciación de Nucleótidos de Alto Rendimiento
6.
Glob Chall ; 5(8): 2000128, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34377532

RESUMEN

Capacitive deionization (CDI) as a novel energy and cost-efficient water treatment technology has attracted increasing attention. The recent development of various faradaic electrode materials has greatly enhanced the performance of CDI as compared with traditional carbon electrodes. Prussian blue (PB) has emerged as a promising CDI electrode material due to its open framework for the rapid intercalation/de-intercalation of sodium ions. However, the desalination efficiency, and durability of previously reported PB-based materials are still unsatisfactory. Herein, a self-template strategy is employed to prepare a Poly(3,4-ethylenedioxythiophene) (PEDOT) reinforced cobalt hexacyanoferrate nanoflakes anchored on carbon cloth (denoted as CoHCF@PEDOT). With the high conductivity and structural stability achieved by coupling with a thin PEDOT layer, the as-prepared CoHCF@PEDOT electrode exhibits a high capacity of 126.7 mAh g-1 at 125 mA g-1. The fabricated hybrid CDI cell delivers a high desalination capacity of 146.2 mg g-1 at 100 mA g-1, and good cycling stability. This strategy provides an efficient method for the design of high-performance faradaic electrode materials in CDI applications.

7.
ACS Appl Mater Interfaces ; 13(18): 21149-21156, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33905227

RESUMEN

Capacitive deionization (CDI) is a promising cost-effective and low energy consumption technology for water desalination. However, most of the previous works focus on only one side of the CDI system, i.e., Na+ ion capture, while the other side that stores chloride ions, which is equally important, receives very little attention. This is attributed to the limited Cl- storage materials as well as their sluggish kinetics and poor stability. In this article, we demonstrate that a N-doped porous carbon framework is capable of suppressing the phase-transformation-induced performance decay of bismuth, affording an excellent Cl- storage and showing potential for water desalination. The obtained Bi-carbon composite (Bi/N-PC) shows a capacity of up to 410.4 mAh g-1 at 250 mA g-1 and a high rate performance. As a demonstration for water desalination, a superior desalination capacity of 113.4 mg g-1 is achieved at 100 mA g-1 with excellent durability. Impressively, the CDI system exhibits fast ion capturing with a desalination rate as high as 0.392 mg g-1 s-1, outperforming most of the recently reported Cl- capturing electrodes. This strategy is applicable to other Cl- storage materials for next-generation capacitive deionization.

8.
Front Chem ; 8: 415, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32500060

RESUMEN

Clean energy and environmental protection are critical to the sustainable development of human society. The numerous emerged electrode materials for energy storage devices offer opportunities for the development of capacitive deionization (CDI), which is considered as a promising water treatment technology with advantages of low cost, high energy efficiency, and wide application. Conventional CDI based on porous carbon electrode has low salt removal capacity which limits its application in high salinity brine. Recently, the faradaic electrode materials inspired by the researches of sodium-batteries appear to be attractive candidates for next-generation CDI which capture ions by the intercalation or redox reactions in the bulk of electrode. In this mini review, we summarize the recent advances in the development of various faradaic materials as CDI electrodes with the discussion of possible strategies to address the problems present.

9.
Small ; 16(10): e1906775, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31995284

RESUMEN

Portable water splitting devices driven by rechargeable metal-air batteries or solar cells are promising, however, their scalable usages are still hindered by lack of suitable multifunctional electrocatalysts. Here, a highly efficient multifunctional electrocatalyst is demonstrated, i.e., 2D nanosheet array of Mo-doped NiCo2 O4 /Co5.47 N heterostructure deposited on nickel foam (Mo-NiCo2 O4 /Co5.47 N/NF). The successful doping of non-3d high-valence metal into a heterostructured nanosheet array, which is directly grown on a conductive substrate endows the resultant catalyst with balanced electronic structure, highly exposed active sites, and binder-free electrode architecture. As a result, the Mo-NiCo2 O4 /Co5.47 N/NF exhibits remarkable catalytic activity toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), affording high current densities of 50 mA cm-2 at low overpotentials of 310 mV for OER, and 170 mV for HER, respectively. Moreover, a low voltage of 1.56 V is achieved for the Mo-NiCo2 O4 /Co5.47 N/NF-based water splitting cell to reach 10 mA cm-2 . More importantly, a portable overall water splitting device is demonstrated through the integration of a water-splitting cell and two Zn-air batteries (open-circuit voltage of 1.43 V), which are all fabricated based on Mo-NiCo2 O4 /Co5.47 N/NF, demonstrating a low-cost way to generate fuel energy. This work offers an effective strategy to develop high-performance metal-doped heterostructured electrode.

10.
Chem Sci ; 11(8): 2181-2186, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34123309

RESUMEN

Compared with the reported intramolecular electro-oxidative cyclization of alkenyl amines or vinyl anilines for the preparation of pyrrolidines or indolines, the intermolecular version is less studied. Herein, this electrochemical intermolecular oxidative annulation of anilines and alkenes for the preparation of indolines proceeded under external oxidant-free conditions. The most noteworthy achievement of our work is the facile generation of indolines with quaternary centers at the 2-position. In addition, alkenes and anilines bearing various functional groups can be well tolerated. Remarkably, electrolyte-free conditions were used in an electrochemical flow cell, which shows the application potential of this method.

11.
ChemSusChem ; 13(6): 1537-1545, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31797574

RESUMEN

Aqueous zinc-ion batteries (ZIBs) have been considered as prospective alternatives for lithium-ion batteries, which are able to serve as power sources for next-generation wearable and flexible devices, owing to the merits of abundant zinc resources and high safety of aqueous electrolyte. However, the lack of suitable cathode materials with flexibility for ZIBs hinders their further application. Herein, a novel cathode material [i.e., MnO2 nanosheet-assembled hollow polyhedron anchored on carbon cloth (MnO2 /CC)] was prepared through a rapid hydrothermal method by using ZIF-67 as self-sacrificing template. When tested in an aqueous ZIB, the MnO2 /CC delivered a high reversible capacity of 263.9 mAh g-1 at 1.0 A g-1 after 300 cycles, far exceeding those of the commercial MnO2 electrode. More importantly, benefiting from the unique structural advantages, a flexible ZIB assembled based on the MnO2 /CC displayed a stable output voltage of 1.53 V and a specific capacity of 91.7 mAh g-1 at 0.1 A g-1 after 30 cycles. It also successfully lit LED bulbs even under different bending angles, showing good flexibility. This research contributes to the development of MnO2 -based cathode materials for high-performance flexible ZIBs.

12.
Chem Rev ; 119(12): 6769-6787, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31074264

RESUMEN

Photo-/electrochemical catalyzed oxidative R1-H/R2-H cross-coupling with hydrogen evolution has become an increasingly important issue for molecular synthesis. The dream of construction of C-C/C-X bonds from readily available C-H/X-H with release of H2 can be facilely achieved without external chemical oxidants, providing a greener model for chemical bond formation. Given the great influence of these reactions in organic chemistry, we give a summary of the state of the art in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo/electrochemistry, and we hope this review will stimulate the development of a greener synthetic strategy in the near future.

13.
J Am Chem Soc ; 140(18): 6006-6013, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29676914

RESUMEN

A new way for C(sp3)-C(sp) cross-coupling with terminal alkynes has been developed by using a multi-metal-catalyzed reaction strategy. Alkyl radicals generated from different approaches are able to couple with terminal alkynes by judicious selection of the catalyst combination. This reaction protocol offers an efficient alternative approach for the synthesis of substituted alkynes from terminal alkynes besides traditional Sonogashira coupling. Mechanistic studies have also been carried out to clarify the role of each metal catalyst in the radical alkynylation processes. The reactions were found to go through radical reaction pathways. Synergistic cooperation of the metal catalysts is the key for controlling the reaction selectivity of alkyl radicals toward C(sp3)-C(sp) bond formation.

14.
J Am Chem Soc ; 140(12): 4195-4199, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29522680

RESUMEN

An environmentally friendly electrochemical protocol about cobalt-catalyzed C-H amination of arenes has been developed, which offers a simple way to access synthetically useful arylamines. In divided cells, a wide variety of arenes and alkylamines are examined to afford C-N formation products without using external oxidants, which avoids the formation of undesired byproducts and exhibits high atom economy. Importantly, the reaction can also be extended to gram level with moderate efficiency. KIE experiments indicate that C-H bond cleavage might not be involved during the rate-limiting step.

15.
Chem Commun (Camb) ; 53(23): 3354-3356, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28261710

RESUMEN

An electrocatalytic reaction protocol is developed for achieving intramolecular dehydrogenative annulation of N-aryl enamines. It offers a simple and efficient way for the synthesis of indoles in an undivided cell. Good to excellent yields are obtained under oxidant-free and transition-metal-free conditions. Moreover, imidazo[1,2-a]pyridines could also be produced when N-pyridyl enamines were used as the substrates.

16.
Chem Commun (Camb) ; 51(52): 10524-7, 2015 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-26038311

RESUMEN

A silver catalysed synthesis of oxazoles by the oxidative decarboxylation-cyclization of α-oxocarboxylates and isocyanides was developed. This method provided a novel strategy to construct oxazole rings compared to traditional methods. Mechanistic investigations such as operando IR, EPR and radical inhibition experiments were carefully done and confirmed the acyl cation and Ag(II) as the intermediates in this transformation, and the involvement of a radical decarboxylative process.


Asunto(s)
Cianuros/química , Cetoácidos/química , Oxazoles/síntesis química , Plata/química , Catálisis , Ciclización , Descarboxilación , Estructura Molecular , Oxazoles/química , Oxidación-Reducción
17.
Org Lett ; 17(10): 2404-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25945514

RESUMEN

Through iodine catalysis, the direct oxidative coupling/annulation of ß-keto esters or 2-pyridinyl-ß-esters with alkenes was achieved. This reaction procedure provides a simple and selective way for the synthesis of dihydrofurans and indolizines in one step.

18.
Org Biomol Chem ; 13(22): 6154-7, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25944043

RESUMEN

A simple palladium-catalysed oxidative cross-coupling between two different alcohols was developed. Various benzylic alcohols could couple with aliphatic alcohols in excellent yields. The use of benzyl chloride as the oxidant and the amount of aliphatic alcohol were both important for achieving the reaction selectivity.

19.
Org Lett ; 17(9): 2174-7, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25860622

RESUMEN

A novel oxidative C-H/C-H cross-coupling reaction between electron-rich arenes and alkenes is established utilizing FeCl3 as the catalyst and DDQ as the oxidant. Interestingly, direct arylation products are obtained with diaryl-ethylenes and double arylation products are obtained with styrene derivatives, which show high chemoselectivity and good substrate scope. A radical trapping experiment and EPR (electron paramagnetic resonance) experiments indicate that this reaction proceeds through a radical pathway in which DDQ plays a key role in the aryl radical formation. XAFS (X-ray absorption fine structure) experiments reveal that the oxidation state of the iron catalyst does not change during the reaction, suggesting that FeCl3 might be used as a Lewis acid. Finally, a detailed mechanism is proposed for this transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...