Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e29092, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601529

RESUMEN

Optically pumped magnetometers can provide functionality for bio-magnetic field detection and mapping. This has attracted widespread attention from researchers in the biomedical science field. Magnetocardiography has been proven to be an effective method for examining heart disease. Notably, vector magnetocardiography obtains more spatial information than the conventional method by only taking a component that is perpendicular to the chest surface. In this work, a spin-exchange-relaxation-free (SERF) magnetometer with a compact size of 14 mm × 25 mm × 90 mm was developed. The device has a high sensitivity of 25 fT/ Hz. Meanwhile, in the multichannel working mode, synchronous sensor manipulation and data acquisition can be achieved through our control software without additional data acquisition boards. Since a typical SERF magnetometer only responds to dual-axis magnetic fields, two sensors are orthogonally arranged to form a vector detection channel. Our system consists of seven channels and allows 7 × 9 vector MCG mapping by scanning. High-quality heart vector signals are measured, and P peak, QRS peak, and T peak can be distinguished clearly. To better demonstrate the vectorial information, a vector scatter plot form is also provided. Through a basic bio-electric current model, it demonstrates that triaxial MCG measurements capture a richer spatial current information than traditional uniaxial MCG, offering substantial diagnostic potential for heart diseases and shedding more light on the inversion of cardiac issues.

2.
J Fungi (Basel) ; 8(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35448594

RESUMEN

Tea-oil tree (Camellia oleifera Abel.) is a unique woody edible oil species in China. Anthracnose is the common disease of Ca. oleifera, which affected the production and brought huge economic losses. Colletotrichum fructicola is the dominant pathogen causing Ca. oleifera anthracnose. The gene CfSET1 was deleted and its roles in development and pathogenicity of C. fructicola were studied. Our results show that this protein participated in the growth, conidiation, appressorium formation, and pathogenicity of this fungal pathogen. Our results help us understand the mechanisms of pathogenesis in C. fructicola and suggest CfSet1 as a potential target for the development of new fungicide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...