Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(29): 11618-11625, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37424080

RESUMEN

In order to investigate the effects of the secondary coordination sphere in fine-tuning redox potentials (E°') of type 1 blue copper (T1Cu) in cupredoxins, we have introduced M13F, M44F, and G116F mutations both individually and in combination in the secondary coordination sphere of the T1Cu center of azurin (Az) from Pseudomonas aeruginosa. These variants were found to differentially influence the E°' of T1Cu, with M13F Az decreasing E°', M44F Az increasing E°', and G116F Az showing a negligible effect. In addition, combining the M13F and M44F mutations increases E°' by 26 mV relative to WT-Az, which is very close to the combined effect of E°' by each mutation. Furthermore, combining G116F with either M13F or M44F mutation resulted in negative and positive cooperative effects, respectively. Crystal structures of M13F/M44F-Az, M13F/G116F-Az, and M44F/G116F-Az combined with that of G116F-Az reveal these changes arise from steric effects and fine-tuning of hydrogen bond networks around the copper-binding His117 residue. The insights gained from this study would provide another step toward the development of redox-active proteins with tunable redox properties for many biological and biotechnological applications.


Asunto(s)
Azurina , Azurina/química , Cobre/química , Fenilalanina/química , Modelos Moleculares , Mutación , Oxidación-Reducción , Pseudomonas aeruginosa/química
2.
J Am Chem Soc ; 138(20): 6324-7, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27120678

RESUMEN

Mononuclear cupredoxin proteins usually contain a coordinately saturated type 1 copper (T1Cu) center and function exclusively as electron carriers. Here we report a cupredoxin isolated from the nitrifying archaeon Nitrosopumilus maritimus SCM1, called Nmar1307, that contains a T1Cu center with an open binding site containing water. It displays a deep purple color due to strong absorptions around 413 nm (1880 M(-1) cm(-1)) and 558 nm (2290 M(-1) cm(-1)) in the UV-vis electronic spectrum. EPR studies suggest the protein contains two Cu(II) species of nearly equal population, one nearly axial, with hyperfine constant A∥ = 98 × 10(-4) cm(-1), and another more rhombic, with a smaller A∥ value of 69 × 10(-4) cm(-1). The X-ray crystal structure at 1.6 Å resolution confirms that it contains a Cu atom coordinated by two His and one Cys in a trigonal plane, with an axial H2O at 2.25 Å. Both UV-vis absorption and EPR spectroscopic studies suggest that the Nmar1307 can oxidize NO to nitrite, an activity that is attributable to the high reduction potential (354 mV vs SHE) of the copper site. These results suggest that mononuclear cupredoxins can have a wide range of structural features, including an open binding site containing water, making this class of proteins even more versatile.


Asunto(s)
Archaea/química , Azurina/química , Cobre/química , Sitios de Unión , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Conformación Proteica
3.
Biochemistry ; 55(10): 1494-502, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26885726

RESUMEN

Noncovalent second-shell interactions are important in controlling metal-binding affinity and activity in metalloenzymes, but fine-tuning these interactions in designed metalloenzymes has not been fully explored. As a result, most designed metalloenzymes have low metal-binding affinity and activity. Here we identified three mutations in the second coordination shell of an engineered Mn(II)-binding site in cytochrome c peroxidase (called MnCcP.1, containing Glu45, Glu37, and Glu181 ligands) that mimics the native manganese peroxidase (MnP), and explored their effects on both Mn(II)-binding affinity and MnP activity. First, removing a hydrogen bond to Glu45 through Tyr36Phe mutation enhanced Mn(II)-binding affinity, as evidenced by a 2.8-fold decrease in the KM of Mn(II) oxidation. Second, introducing a salt bridge through Lys179Arg mutation improved Glu35 and Glu181 coordination to Mn(II), decreasing KM 2.6-fold. Third, eliminating a steric clash that prevented Glu37 from orienting toward Mn(II) resulted in an 8.6-fold increase in kcat/KM, arising primarily from a 3.6-fold decrease in KM, with a KM value comparable to that of the native enzyme (0.28 mM vs 0.19 mM for Pleurotus eryngii MnP PS3). We further demonstrated that while the effects of Tyr36Phe and Lys179Arg mutations are additive, because involved in secondary-shell interactions to different ligands, other combinations of mutations were antagonistic because they act on different aspects of the Mn(II) coordination at the same residues. Finally, we showed that these MnCcP variants are functional models of MnP that mimic its activity in both Mn(II) oxidation and degradation of a phenolic lignin model compound and kraft lignin. In addition to achieving KM in a designed protein that is similar to the that of native enzyme, our results offer molecular insight into the role of noncovalent interactions around metal-binding sites for improving metal binding and overall activity; such insight can be applied to rationally enhance these properties in other metalloenzymes and their models.


Asunto(s)
Citocromo-c Peroxidasa/metabolismo , Manganeso/metabolismo , Peroxidasas/metabolismo , Sitios de Unión/fisiología , Cristalización , Citocromo-c Peroxidasa/química , Activación Enzimática/fisiología , Manganeso/química , Peroxidasas/química , Estructura Secundaria de Proteína
5.
Nat Nanotechnol ; 6(2): 93-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21278750

RESUMEN

Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.


Asunto(s)
Cristalización/métodos , Oro/química , Nanopartículas del Metal , Muramidasa/química , Cristalografía por Rayos X , Cinética , Mercurio/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Moleculares , Tamaño de la Partícula , Fosfinas/química , Factores de Tiempo , Tomografía
6.
J Am Chem Soc ; 132(29): 9970-2, 2010 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-20586490

RESUMEN

A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe(B)Mb(-His)). A high resolution (1.65 A) crystal structure of Cu(II)-CN(-)-Fe(B)Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe(B)Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe(B)Mb(-His) and Fe(II)-Fe(B)Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site. EPR studies showed that the reduction of NO to N(2)O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe(B)Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe(B)Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.


Asunto(s)
Sustitución de Aminoácidos , Hierro , Mioglobina/química , Mioglobina/metabolismo , Oxidorreductasas/metabolismo , Animales , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Mioglobina/genética , Conformación Proteica , Espectrofotometría Ultravioleta
7.
Proc Natl Acad Sci U S A ; 107(19): 8581-6, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20421510

RESUMEN

A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative Fe(B) site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by approximately 110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a approximately 100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the Fe(B) site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.


Asunto(s)
Glutamatos/metabolismo , Metales/metabolismo , Mioglobina/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Ingeniería de Proteínas , Sustitución de Aminoácidos/genética , Animales , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Iones , Hierro/química , Hierro/metabolismo , Mioglobina/química , Óxido Nítrico/metabolismo , Oxidación-Reducción , Cachalote , Factores de Tiempo
8.
J Mol Biol ; 397(3): 789-98, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20138892

RESUMEN

We survey the two-state to downhill folding transition by examining 20 lambda(6-85)* mutants that cover a wide range of stabilities and folding rates. We investigated four new lambda(6-85)* mutants designed to fold especially rapidly. Two were engineered using the core remodeling of Lim and Sauer, and two were engineered using Ferreiro et al.'s frustratometer. These proteins have probe-dependent melting temperatures as high as 80 degrees C and exhibit a fast molecular phase with the characteristic temperature dependence of the amplitude expected for downhill folding. The survey reveals a correlation between melting temperature and downhill folding previously observed for the beta-sheet protein WW domain. A simple model explains this correlation and predicts the melting temperature at which downhill folding becomes possible. An X-ray crystal structure with a 1.64-A resolution of a fast-folding mutant fragment shows regions of enhanced rigidity compared to the full wild-type protein.


Asunto(s)
Modelos Moleculares , Pliegue de Proteína , Proteínas Represoras/química , Proteínas Reguladoras y Accesorias Virales/química , Bacteriófagos , Cristalografía por Rayos X , Cinética , Modelos Químicos , Mutación/genética , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Termodinámica , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo
9.
Nature ; 462(7276): 1079-82, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19940850

RESUMEN

Protein design provides a rigorous test of our knowledge about proteins and allows the creation of novel enzymes for biotechnological applications. Whereas progress has been made in designing proteins that mimic native proteins structurally, it is more difficult to design functional proteins. In comparison to recent successes in designing non-metalloproteins, it is even more challenging to rationally design metalloproteins that reproduce both the structure and function of native metalloenzymes. This is because protein metal-binding sites are much more varied than non-metal-containing sites, in terms of different metal ion oxidation states, preferred geometry and metal ion ligand donor sets. Because of their variability, it has been difficult to predict metal-binding site properties in silico, as many of the parameters, such as force fields, are ill-defined. Therefore, the successful design of a structural and functional metalloprotein would greatly advance the field of protein design and our understanding of enzymes. Here we report a successful, rational design of a structural and functional model of a metalloprotein, nitric oxide reductase (NOR), by introducing three histidines and one glutamate, predicted as ligands in the active site of NOR, into the distal pocket of myoglobin. A crystal structure of the designed protein confirms that the minimized computer model contains a haem/non-haem Fe(B) centre that is remarkably similar to that in the crystal structure. This designed protein also exhibits NO reduction activity, and so models both the structure and function of NOR, offering insight that the active site glutamate is required for both iron binding and activity. These results show that structural and functional metalloproteins can be rationally designed in silico.


Asunto(s)
Oxidorreductasas/química , Oxidorreductasas/síntesis química , Animales , Cristalización , Hierro/metabolismo , Modelos Moleculares , Mioglobina/química , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
10.
Nature ; 462(7269): 113-6, 2009 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-19890331

RESUMEN

Redox processes are at the heart of numerous functions in chemistry and biology, from long-range electron transfer in photosynthesis and respiration to catalysis in industrial and fuel cell research. These functions are accomplished in nature by only a limited number of redox-active agents. A long-standing issue in these fields is how redox potentials are fine-tuned over a broad range with little change to the redox-active site or electron-transfer properties. Resolving this issue will not only advance our fundamental understanding of the roles of long-range, non-covalent interactions in redox processes, but also allow for design of redox-active proteins having tailor-made redox potentials for applications such as artificial photosynthetic centres or fuel cell catalysts for energy conversion. Here we show that two important secondary coordination sphere interactions, hydrophobicity and hydrogen-bonding, are capable of tuning the reduction potential of the cupredoxin azurin over a 700 mV range, surpassing the highest and lowest reduction potentials reported for any mononuclear cupredoxin, without perturbing the metal binding site beyond what is typical for the cupredoxin family of proteins. We also demonstrate that the effects of individual structural features are additive and that redox potential tuning of azurin is now predictable across the full range of cupredoxin potentials.


Asunto(s)
Azurina/química , Azurina/metabolismo , Azurina/genética , Sitios de Unión , Cobre/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Oxidación-Reducción , Conformación Proteica
11.
J Am Chem Soc ; 131(14): 5153-62, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19309137

RESUMEN

Considerable effort has focused on the development of selective protein farnesyl transferase (FTase) and protein geranylgeranyl transferase (GGTase) inhibitors as cancer chemotherapeutics. Here, we report a new strategy for anticancer therapeutic agents involving inhibition of farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS), the two enzymes upstream of FTase and GGTase, by lipophilic bisphosphonates. Due to dual site targeting and decreased polarity, the compounds have activities far greater than do current bisphosphonate drugs in inhibiting tumor cell growth and invasiveness, both in vitro and in vivo. We explore how these compounds inhibit cell growth and how cell activity can be predicted based on enzyme inhibition data, and using X-ray diffraction, solid state NMR, and isothermal titration calorimetry, we show how these compounds bind to FPPS and/or GGPPS.


Asunto(s)
Difosfonatos/química , Difosfonatos/farmacología , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Geraniltranstransferasa/antagonistas & inhibidores , Geraniltranstransferasa/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Lípidos/química , Ratones , Ratones Desnudos , Invasividad Neoplásica , Resonancia Magnética Nuclear Biomolecular , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/enzimología
12.
Biochemistry ; 47(47): 12398-408, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-18973345

RESUMEN

To understand the mechanisms that govern T cell receptor (TCR)-peptide MHC (pMHC) binding and the role that different regions of the TCR play in affinity and antigen specificity, we have studied the TCR from T cell clone 2C. High-affinity mutants of the 2C TCR that bind QL9-L(d) as a strong agonist were generated previously by site-directed mutagenesis of complementarity determining regions (CDRs) 1beta, 2alpha, 3alpha, or 3beta. We performed isothermal titration calorimetry to assess whether they use similar thermodynamic mechanisms to achieve high affinity for QL9-L(d). Four of the five TCRs examined bound to QL9-L(d) in an enthalpically driven, entropically unfavorable manner. In contrast, the high-affinity CDR1beta mutant resembled the wild-type 2C TCR interaction, with favorable entropy. To assess fine specificity, we measured the binding and kinetics of these mutants for both QL9-L(d) and a single amino acid peptide variant of QL9, called QL9-Y5-L(d). While 2C and most of the mutants had equal or higher affinity for the Y5 variant than for QL9, mutant CDR1beta exhibited 8-fold lower affinity for Y5 compared to QL9. To examine possible structural correlates of the thermodynamic and fine specificity signatures of the TCRs, the structure of unliganded QL9-L(d) was solved and compared to structures of the 2C TCR/QL9-L(d) complex and three high-affinity TCR/QL9-L(d) complexes. Our findings show that the QL9-L(d) complex does not undergo major conformational changes upon binding. Thus, subtle changes in individual CDRs account for the diverse thermodynamic and kinetic binding mechanisms and for the different peptide fine specificities.


Asunto(s)
Oligopéptidos/metabolismo , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Secuencia de Aminoácidos , Animales , Cricetinae , Cinética , Ligandos , Ratones , Modelos Moleculares , Mutación , Oligopéptidos/química , Unión Proteica , Conformación Proteica , Ratas , Receptores de Antígenos de Linfocitos T/genética , Especificidad por Sustrato , Termodinámica , Transfección
13.
Biochemistry ; 47(6): 1622-30, 2008 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-18186649

RESUMEN

Aedes aegypti kynurenine aminotransferase (AeKAT) is a multifunctional aminotransferase. It catalyzes the transamination of a number of amino acids and uses many biologically relevant alpha-keto acids as amino group acceptors. AeKAT also is a cysteine S-conjugate beta-lyase. The most important function of AeKAT is the biosynthesis of kynurenic acid, a natural antagonist of NMDA and alpha7-nicotinic acetylcholine receptors. Here, we report the crystal structures of AeKAT in complex with its best amino acid substrates, glutamine and cysteine. Glutamine is found in both subunits of the biological dimer, and cysteine is found in one of the two subunits. Both substrates form external aldemines with pyridoxal 5-phosphate in the structures. This is the first instance in which one pyridoxal 5-phosphate enzyme has been crystallized with cysteine or glutamine forming external aldimine complexes, cysteinyl aldimine and glutaminyl aldimine. All the units with substrate are in the closed conformation form, and the unit without substrate is in the open form, which suggests that the binding of substrate induces the conformation change of AeKAT. By comparing the active site residues of the AeKAT-cysteine structure with those of the human KAT I-phenylalanine structure, we determined that Tyr286 in AeKAT is changed to Phe278 in human KAT I, which may explain why AeKAT transaminates hydrophilic amino acids more efficiently than human KAT I does.


Asunto(s)
Transaminasas/metabolismo , Aedes , Secuencia de Aminoácidos , Animales , Cristalización , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Transaminasas/química
14.
J Phys Chem B ; 111(51): 14362-9, 2007 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-18052145

RESUMEN

The study of micro- or nanocrystalline proteins by magic-angle spinning (MAS) solid-state NMR (SSNMR) gives atomic-resolution insight into structure in cases when single crystals cannot be obtained for diffraction studies. Subtle differences in the local chemical environment around the protein, including the characteristics of the cosolvent and the buffer, determine whether a protein will form single crystals. The impact of these small changes in formulation is also evident in the SSNMR spectra; however, the changes lead only to correspondingly subtle changes in the spectra. Here, we demonstrate that several formulations of GB1 microcrystals yield very high quality SSNMR spectra, although only a subset of conditions enable growth of single crystals. We have characterized these polymorphs by X-ray powder diffraction and assigned the SSNMR spectra. Assignments of the 13C and 15N SSNMR chemical shifts confirm that the backbone structure is conserved, indicative of a common protein fold, but side chain chemical shifts are changed on the surface of the protein, in a manner dependent upon crystal packing and electrostatic interactions with salt in the mother liquor. Our results demonstrate the ability of SSNMR to reveal minor structural differences among crystal polymorphs. This ability has potential practical utility for studying the formulation chemistry of industrial and therapeutic proteins, as well as for deriving fundamental insights into the phenomenon of single-crystal growth.


Asunto(s)
Proteínas Bacterianas/química , Cristalización , Espectroscopía de Resonancia Magnética/métodos , Conformación Proteica , Difracción de Rayos X/métodos
15.
J Virol ; 81(20): 11489-98, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17686848

RESUMEN

Chemokines and their receptors play important roles in normal physiological functions and the pathogeneses of a wide range of human diseases, including the entry of human immunodeficiency virus type 1 (HIV-1). However, the use of natural chemokines to probe receptor biology or to develop therapeutic drugs is limited by their lack of selectivity and the poor understanding of mechanisms in ligand-receptor recognition. We addressed these issues by combining chemical and structural biology in research into molecular recognition and inhibitor design. Specifically, the concepts of chemical biology were used to develop synthetically and modularly modified (SMM) chemokines that are unnatural and yet have properties improved over those of natural chemokines in terms of receptor selectivity, affinity, and the ability to explore receptor functions. This was followed by using structural biology to determine the structural basis for synthetically perturbed ligand-receptor selectivity. As a proof-of-principle for this combined chemical and structural-biology approach, we report a novel D-amino acid-containing SMM-chemokine designed based on the natural chemokine called viral macrophage inflammatory protein II (vMIP-II). The incorporation of unnatural D-amino acids enhanced the affinity of this molecule for CXCR4 but significantly diminished that for CCR5 or CCR2, thus yielding much more selective recognition of CXCR4 than wild-type vMIP-II. This D-amino acid-containing chemokine also showed more potent and specific inhibitory activity against HIV-1 entry via CXCR4 than natural chemokines. Furthermore, the high-resolution crystal structure of this D-amino acid-containing chemokine and a molecular-modeling study of its complex with CXCR4 provided the structure-based mechanism for the selective interaction between the ligand and chemokine receptors and the potent anti-HIV activity of D-amino acid-containing chemokines.


Asunto(s)
Fármacos Anti-VIH/química , Quimiocinas/química , VIH , Aminoácidos , Quimiocinas/farmacología , Cristalización , Humanos , Estructura Molecular , Receptores CXCR4/metabolismo , Relación Estructura-Actividad
17.
J Biol Inorg Chem ; 12(1): 126-37, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17021923

RESUMEN

Manganese peroxidase (MnP) from the white rot fungus Phanerochaete chrysosporium contains a manganese-binding site that plays a critical role in its function. Previously, a Mn(II)-binding site was designed into cytochrome c peroxidase (CcP) based on sequence homology (Yeung et al. in Chem. Biol. 4:215-222, 1997; Gengenbach et al. in Biochemistry 38:11425-11432, 1999). Here, we report a redesign of this site based on X-ray structural comparison of MnP and CcP. The variant, CcP(D37E, V45E, H181E), displays 2.5-fold higher catalytic efficiency (k (cat)/K (M)) than the variant in the original design, mostly due to a stronger K (M) of 1.9 mM (vs. 4.1 mM). High-resolution X-ray crystal structures of a metal-free form and a form with Co(II) at the designed Mn(II) site were also obtained. The metal ion in the engineered metal-binding site overlays well with Mn(II) bound in MnP, suggesting that this variant is the closest structural model of the Mn(II)-binding site in MnP for which a crystal structure exists. A major difference arises in the distances of the ligands to the metal; the metal-ligand interactions in the CcP variant are much weaker than the corresponding interactions in MnP, probably owing to partial occupancy of metal ion at the designed site, difference in the identity of metal ions (Co(II) rather than Mn(II)) and other interactions in the second coordination sphere. These results indicate that the metal ion, the ligands, and the environment around the metal-binding site play important roles in tuning the structure and function of metalloenzymes.


Asunto(s)
Citocromo-c Peroxidasa/química , Manganeso/química , Sitios de Unión , Cristalografía por Rayos X , Citocromo-c Peroxidasa/genética , Espectroscopía de Resonancia por Spin del Electrón/métodos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Sensibilidad y Especificidad , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta/métodos , Relación Estructura-Actividad
18.
J Am Chem Soc ; 128(45): 14485-97, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17090032

RESUMEN

Bisphosphonates are a class of molecules in widespread use in treating bone resorption diseases and are also of interest as immunomodulators and anti-infectives. They function by inhibiting the enzyme farnesyl diphosphate synthase (FPPS), but the details of how these molecules bind are not fully understood. Here, we report the results of a solid-state (13)C, (15)N, and (31)P magic-angle sample spinning (MAS) NMR and quantum chemical investigation of several bisphosphonates, both as pure compounds and when bound to FPPS, to provide information about side-chain and phosphonate backbone protonation states when bound to the enzyme. We then used computational docking methods (with the charges assigned by NMR) to predict how several bisphosphonates bind to FPPS. Finally, we used X-ray crystallography to determine the structures of two potent bisphosphonate inhibitors, finding good agreement with the computational results, opening up the possibility of using the combination of NMR, quantum chemistry and molecular docking to facilitate the design of other, novel prenytransferase inhibitors.


Asunto(s)
Cristalografía por Rayos X/métodos , Difosfonatos/química , Geraniltranstransferasa/química , Espectroscopía de Resonancia Magnética
19.
J Biol Chem ; 281(48): 37175-82, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16990263

RESUMEN

Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.


Asunto(s)
Transaminasas/química , Aedes , Alanina/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Quinurenina/análogos & derivados , Quinurenina/química , Modelos Moleculares , Datos de Secuencia Molecular , Fosfato de Piridoxal/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Xanturenatos/química
20.
FEBS J ; 272(9): 2198-206, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15853804

RESUMEN

Aedes aegypti kynurenine aminotransferase (AeKAT) catalyzes the irreversible transamination of kynurenine to kynurenic acid, the natural antagonist of NMDA and 7-nicotinic acetycholine receptors. Here, we report the crystal structure of AeKAT in its PMP and PLP forms at 1.90 and 1.55 A, respectively. The structure was solved by a combination of single-wavelength anomalous dispersion and molecular replacement approaches. The initial search model in the molecular replacement method was built with the result of single-wavelength anomalous dispersion data from the Br-AeKAT crystal in combination with homology modeling. The solved structure shows that the enzyme is a homodimer, and that the two subunits are stabilized by a number of hydrogen bonds, salts bridges, and hydrophobic interactions. Each subunit is divided into an N-terminal arm and small and large domains. Based on its folding, the enzyme belongs to the prototypical fold type, aminotransferase subgroup I. The three-dimensional structure shows a strictly conserved 'PLP-phosphate binding cup' featuring PLP-dependent enzymes. The interaction between Cys284 (A) and Cys284 (B) is unique in AeKAT, which might explain the cysteine effect of AeKAT activity. Further mutation experiments of this residue are needed to eventually understand the mechanism of the enzyme modulation by cysteine.


Asunto(s)
Aedes/enzimología , Estructura Terciaria de Proteína , Transaminasas/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transaminasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...