Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(11): 110972, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705043

RESUMEN

The molecular mechanism underlying the functional interaction between H1R and TRPV1 remains unclear. We show here that H1R directly binds to the carboxy-terminal region of TRPV1 at residues 715-725 and 736-749. Cell-penetrating peptides containing these sequences suppress histamine-induced scratching behavior in a cheek injection model. The H1R-TRPV1 binding is kept at a minimum at rest in mouse trigeminal neurons due to TRPV1 SUMOylation and it is enhanced upon histamine treatment through a transient TRPV1 deSUMOylation. The knockin of the SUMOylation-deficient TRPV1K823R mutant in mice leads to constitutive enhancement of H1R-TRPV1 binding, which exacerbates scratching behaviors induced by histamine. Conversely, SENP1 conditional knockout in sensory neurons enhances TRPV1 SUMOylation and suppresses the histamine-induced scratching response. In addition to interfering with binding, TRPV1 SUMOylation promotes H1R degradation through ubiquitination. Our work unveils the molecular mechanism of histaminergic itch by which H1R directly binds to deSUMOylated TRPV1 to facilitate the transduction of the pruritogen signal to the scratching response.


Asunto(s)
Histamina , Prurito , Receptores Histamínicos H1 , Sumoilación , Animales , Histamina/metabolismo , Ratones , Prurito/inducido químicamente , Prurito/metabolismo , Receptores Histamínicos H1/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
2.
Sci Adv ; 6(13): eaaz0361, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32232156

RESUMEN

Imbalanced mitochondrial fission/fusion, a major cause of apoptotic cell death, often results from dysregulation of Drp1 phosphorylation of two serines, S616 and S637. Whereas kinases for Drp1-S616 phosphorylation are well-described, phosphatase(s) for its dephosphorylation remains unclear. Here, we show that dual-specificity phosphatase 6 (DUSP6) dephosphorylates Drp1-S616 independently of its known substrates ERK1/2. DUSP6 keeps Drp1-S616 phosphorylation levels low under normal conditions. The stability and catalytic function of DUSP6 are maintained through conjugation of small ubiquitin-like modifier-1 (SUMO1) and SUMO2/3 at lysine-234 (K234), which is disrupted during oxidation through transcriptional up-regulation of SUMO-deconjugating enzyme, SENP1, causing DUSP6 degradation by ubiquitin-proteasome. deSUMOylation underlies DUSP6 degradation, Drp1-S616 hyperphosphorylation, mitochondrial fragmentation, and apoptosis induced by H2O2 in cultured cells or brain ischemia/reperfusion in mice. Overexpression of DUSP6, but not the SUMOylation-deficient DUSP6K234R mutant, protected cells from apoptosis. Thus, DUSP6 exerts a cytoprotective role by directly dephosphorylating Drp1-S616, which is disrupted by deSUMOylation under oxidation.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/metabolismo , Dinaminas/metabolismo , Estrés Oxidativo , Animales , Apoptosis/genética , Fosfatasa 6 de Especificidad Dual/genética , Dinaminas/genética , Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación , Estabilidad Proteica , Proteolisis , Proteína SUMO-1/metabolismo , Sumoilación , Ubiquitinas/metabolismo
3.
Nat Commun ; 9(1): 2593, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955059

RESUMEN

In the originally published version of this Article, the affiliation details for Yan Wang, Yingwei Gao, Qi Deng, Yangbo Wang, Tian Zhou, Yingping Wang, Huiqing Liu, Ruining Ma, Jinke Cheng and Yong Li incorrectly omitted 'Shanghai Jiao Tong University'. This has now been corrected in both the PDF and HTML versions of the Article.' Furthermore, the Supplementary Information file originally associated with this Article inadvertently omitted Supplementary Figure 9. The error has now been fixed and the corrected version Supplementary Information PDF is available to download from the HTML version of the Article.

4.
Nat Commun ; 9(1): 1529, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670121

RESUMEN

Although TRPV1 channels represent a key player of noxious heat sensation, the precise mechanisms for thermal hyperalgesia remain unknown. We report here that conditional knockout of deSUMOylation enzyme, SENP1, in mouse dorsal root ganglion (DRG) neurons exacerbated thermal hyperalgesia in both carrageenan- and Complete Freund's adjuvant-induced inflammation models. TRPV1 is SUMOylated at a C-terminal Lys residue (K822), which specifically enhances the channel sensitivity to stimulation by heat, but not capsaicin, protons or voltage. TRPV1 SUMOylation is decreased by SENP1 but upregulated upon peripheral inflammation. More importantly, the reduced ability of TRPV1 knockout mice to develop inflammatory thermal hyperalgesia was rescued by viral infection of lumbar 3/4 DRG neurons of wild-type TRPV1, but not its SUMOylation-deficient mutant, K822R. These data suggest that TRPV1 SUMOylation is essential for the development of inflammatory thermal hyperalgesia, through a mechanism that involves sensitization of the channel response specifically to thermal stimulation.


Asunto(s)
Endopeptidasas/metabolismo , Ganglios Espinales/metabolismo , Inflamación , Nocicepción , Dolor/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Cricetinae , Cisteína Endopeptidasas , Genotipo , Células HEK293 , Calor , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Neuronas/metabolismo , Reacción en Cadena de la Polimerasa , Dominios Proteicos , Transducción de Señal , Canales Catiónicos TRPV/genética
5.
Mol Biol Cell ; 27(2): 410-20, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26564794

RESUMEN

Cross-talk among different types of posttranslational modifications (PTMs) has emerged as an important regulatory mechanism for protein function. Here we elucidate a mechanism that controls PKCα stability via a sequential cascade of PTMs. We demonstrate that PKCα dephosphorylation decreases its sumoylation, which in turn promotes its ubiquitination and ultimately enhances its degradation via the ubiquitin-proteasome pathway. These findings provide a molecular explanation for the activation-induced down-regulation of PKC proteins.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Quinasa C-alfa/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Células CHO , Células Cultivadas , Cricetulus , Regulación hacia Abajo , Células HeLa , Humanos , Fosforilación , Sumoilación , Ubiquitina , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...