Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 16(8): 1652-1659, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33433497

RESUMEN

A new nerve matrix membrane derived from decellularized porcine nerves has been shown to retain the major extracellular matrix components, and to be effective in preventing adhesion between the nerve anastomosis sites and the surrounding tissues in a rat sciatic nerve transection model, thereby enhancing regeneration of the nerve. The effectiveness of the membrane may be attributed to its various bioactive components. In this prospective, randomized, single-blind, parallel-controlled multicenter clinical trial, we compared the safety and efficacy of the new nerve matrix membrane with a previously approved bovine tendon-derived type I collagen nerve wrapping. A total of 120 patients with peripheral nerve injury were recruited from Beijing Jishuitan Hospital, The First Bethune Hospital of Jilin University, and Yantai Yuhuangding Hospital, China. The patients were randomly assigned to undergo end-to-end and tension-free neurorrhaphy with nerve matrix membrane (n = 60, 52 male, 8 female, mean age 41.34 years, experimental group) or tendon-derived collagen nerve wrapping (n = 60, 42 male, 18 female, mean age 40.17 years, control group). Patients were followed-up at 14 ± 5, 30 ± 7, 90 ± 10 and 180 ± 20 days after the operation. Safety evaluation included analyses of local and systemic reactions, related laboratory tests, and adverse reactions. Efficacy evaluation included a static 2-point discrimination test, a moving 2-point discrimination test, and a Semmes-Weinstein monofilament examination. Sensory nerve function was evaluated with the British Medical Research Council Scale and Semmes-Weinstein monofilament examination. The ratio (percentage) of patients with excellent to good results in sensory nerve recovery 180 ± 20 days after the treatment was used as the primary effectiveness index. The percentages of patients with excellent to good results in the experimental and control groups were 98.00% and 94.44%, respectively, with no significant difference between the two groups. There were no significant differences in the results of routine blood tests, liver and renal function tests, coagulation function tests, or immunoglobulin tests at 14 and 180 days postoperatively between the two groups. These findings suggest that the novel nerve matrix membrane is similar in efficacy to the commercially-available bovine-derived collagen membrane in the repair of peripheral nerve injury, and it may therefore serve as an alternative in the clinical setting. The clinical trial was approved by the Institutional Ethics Committee of Beijing Jishuitan Hospital, China (approval No. 20160902) on October 8, 2016, the Institutional Ethics Committee of the First Bethune Hospital of Jilin University, China (approval No. 160518-088) on December 14, 2016, and the Institutional Ethics Committee of Yantai Yuhuangding Hospital, China (approval No. 2016-10-01) on December 9, 2016. The clinical trial was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR2000033324) on May 28, 2020.

3.
Plant Physiol Biochem ; 74: 255-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24321875

RESUMEN

Low temperature (LT) negatively affects fertilization processes of flowering plants. Pollen tube growth is generally inhibited under LT stress; however, the mechanism(s) underlying this inhibition remain(s) largely unknown. Pollen tubes are tip-growing and the presence of tip-localized reactive oxygen species (ROS) is necessary for cellular functioning. Disruption of tip-localized ROS was observed in pear pollen tubes in vitro under low temperature of 4 °C (LT4). Diphenylene iodonium chloride, an NADPH oxidase (NOX) inhibitor, suppressed hydrogen peroxide formation in the cell walls of the subapical region in pear pollen tubes. Under LT4 stress, ROS disruption in pear pollen tubes mainly resulted from decreased NOX activity in the plasma membrane, indicating that NOX was the main source of ROS in this process. Moreover, LT4 remarkably decreased mitochondrial oxygen consumption and intracellular ATP production. The endocytosis, an energy-dependent process, disruption in pear pollen tubes under LT4 may be mediated by mitochondrial metabolic dysfunctions. Our data showed ROS and endocytosis events in pear pollen tubes responding to LT4 stress.


Asunto(s)
Frío , Endocitosis , Leucotrieno C4/antagonistas & inhibidores , Tubo Polínico/crecimiento & desarrollo , Pyrus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa/metabolismo
4.
J Cell Sci ; 123(Pt 24): 4301-9, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21098637

RESUMEN

Pear (Pyrus pyrifolia L.) has an S-RNase-based gametophytic self-incompatibility (SI) mechanism, and S-RNase has also been implicated in the rejection of self-pollen and genetically identical pollen. However, RNA degradation might be only the beginning of the SI response, not the end. Recent in vitro studies suggest that S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia, and it seems that a relationship exists between self S-RNase, actin depolymerization and DNA degradation. To further uncover the SI response in pear, the relationship between self S-RNase and tip-localized reactive oxygen species (ROS) was evaluated. Our results show that S-RNase specifically disrupted tip-localized ROS of incompatible pollen tubes via arrest of ROS formation in mitochondria and cell walls. The mitochondrial ROS disruption was related to mitochondrial alteration, whereas cell wall ROS disruption was related to a decrease in NADPH. Tip-localized ROS disruption not only decreased the Ca(2+) current and depolymerized the actin cytoskeleton, but it also induced nuclear DNA degradation. These results indicate that tip-localized ROS disruption occurs in Pyrus pyrifolia SI. Importantly, we demonstrated nuclear DNA degradation in the incompatible pollen tube after pollination in vivo. This result validates our in vitro system in vivo.


Asunto(s)
Núcleo Celular/metabolismo , Fragmentación del ADN , Tubo Polínico/enzimología , Pyrus/citología , Pyrus/enzimología , Especies Reactivas de Oxígeno/metabolismo , Ribonucleasas/metabolismo , Señalización del Calcio , Citoesqueleto/metabolismo , Fluorescencia , Peróxido de Hidrógeno/metabolismo , NADP/metabolismo , Tubo Polínico/citología , Tubo Polínico/ultraestructura , Polinización/fisiología , Polimerizacion , Pyrus/ultraestructura , Esferoplastos/citología , Esferoplastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA