Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(1): 36-45.e4, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38103551

RESUMEN

Oxytocin has long been thought to play a substantial role in social behaviors, such as social attachment and parenting behavior. However, how oxytocin neurons respond to social and non-social stimuli is largely unknown, especially in high temporal resolution. Here, we recorded the in vivo real-time responses of oxytocin neurons in the paraventricular nucleus of the hypothalamus (PVN) in freely behaving mice. Our results revealed that oxytocin neurons were activated more significantly by stressors than social stimuli. The activation of oxytocin neurons was precisely correlated with struggling behavior during stress. Furthermore, we found that oxytocin mediated stress-induced social memory impairment. Our results reveal an important role of PVN oxytocin neurons in stress-induced social amnesia.


Asunto(s)
Hipotálamo , Oxitocina , Ratones , Animales , Núcleo Hipotalámico Paraventricular/fisiología , Neuronas/fisiología , Receptores de Oxitocina , Trastornos de la Memoria/etiología
2.
Commun Biol ; 6(1): 807, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532767

RESUMEN

Postoperative delirium (POD) is a complicated and harmful clinical syndrome. Traditional behaviour analysis mostly focuses on static parameters. However, animal behaviour is a bottom-up and hierarchical organizational structure composed of time-varying posture dynamics. Spontaneous and task-driven behaviours are used to conduct comprehensive profiling of behavioural data of various aspects of model animals. A machine-learning based method is used to assess the effect of dexmedetomidine. Fourteen statistically different spontaneous behaviours are used to distinguish the non-POD group from the POD group. In the task-driven behaviour, the non-POD group has greater deep versus shallow investigation preference, with no significant preference in the POD group. Hyperactive and hypoactive subtypes can be distinguished through pose evaluation. Dexmedetomidine at a dose of 25 µg kg-1 reduces the severity and incidence of POD. Here we propose a multi-scaled clustering analysis framework that includes pose, behaviour and action sequence evaluation. This may represent the hierarchical dynamics of delirium-like behaviours.


Asunto(s)
Delirio , Dexmedetomidina , Delirio del Despertar , Animales , Ratones , Delirio del Despertar/tratamiento farmacológico , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Delirio/diagnóstico , Delirio/tratamiento farmacológico , Delirio/etiología , Complicaciones Posoperatorias/tratamiento farmacológico , Complicaciones Posoperatorias/epidemiología , Conducta Animal
3.
Neuron ; 111(15): 2414-2431.e7, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37224813

RESUMEN

Pain and itch are two closely related but essentially distinct sensations that elicit different behavioral responses. However, it remains mysterious how pain and itch information is encoded in the brain to produce differential perceptions. Here, we report that nociceptive and pruriceptive signals are separately represented and processed by distinct neural ensembles in the prelimbic (PL) subdivision of the medial prefrontal cortex (mPFC) in mice. Pain- and itch-responsive cortical neural ensembles were found to significantly differ in electrophysiological properties, input-output connectivity profiles, and activity patterns to nociceptive or pruriceptive stimuli. Moreover, these two groups of cortical neural ensembles oppositely modulate pain- or itch-related sensory and emotional behaviors through their preferential projections to specific downstream regions such as the mediodorsal thalamus (MD) and basolateral amygdala (BLA). These findings uncover separate representations of pain and itch by distinct prefrontal neural ensembles and provide a new framework for understanding somatosensory information processing in the brain.


Asunto(s)
Complejo Nuclear Basolateral , Corteza Prefrontal , Ratones , Animales , Corteza Prefrontal/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología , Dolor
4.
Mol Psychiatry ; 28(5): 2107-2121, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36754983

RESUMEN

Psychosis is an abnormal mental condition that can cause patients to lose contact with reality. It is a common symptom of schizophrenia, bipolar disorder, sleep deprivation, and other mental disorders. Clinically, antipsychotic medications, such as olanzapine and clozapine, are very effective in treatment for psychosis. To investigate the neural circuit mechanism that is affected by antipsychotics and identify more selective therapeutic targets, we employed a strategy by using these effective antipsychotics to identify antipsychotic neural substrates. We observed that local injection of antipsychotics into the ventral tegmental area (VTA) could reverse the sensorimotor gating defects induced by MK-801 injection in mice. Using in vivo fiber photometry, electrophysiological techniques, and chemogenetics, we found that antipsychotics could activate VTA gamma-aminobutyric acid (GABA) neurons by blocking GABAA receptors. Moreover, we found that the VTAGABA nucleus accumbens (NAc) projection was crucially involved in such antipsychotic effects. In summary, our study identifies a novel therapeutic target for the treatment of psychosis and underscores the utility of a 'bedside-to-bench' approach for identifying neural circuits that influence psychotic disorders.

5.
Sci Rep ; 12(1): 21088, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473899

RESUMEN

Squat toilets are widely used in developing countries due to local customs and low costs. The flushing of a squat toilet can entrain strong airflow and produce aerosols. This investigation constructed a lavatory mock-up with a squat toilet. The flushing-induced airflow was both visualized and quantitatively measured by particle image velocimetry. The maximum height of the impacted airflow was identified by an ultrasonic anemometer. For inference of the particle emission rate, the toilet bowl was covered by an enclosed box for particle concentration measurement. The risks from skin contact of the deposited particles on the flushing button and the door handle and the possible inhalation of the released aerosols were evaluated. The results revealed that flushing a squat toilet can drive toilet plume to rise up to 0.9 m above the toilet bowl. A single flushing process can produce 0.29 million particles with diameters greater than 0.3 µm, among which 90% of the particles are submicron-sized. The flushing may cause particles to deposit on the flushing button and lavatory door handle as well as inhalation exposure even remaining in the lavatory for half a minute after flushing, especially for those lavatory users whose respiratory zones are below 1.0 m.


Asunto(s)
Cultura , Ultrasonido
6.
Front Hum Neurosci ; 16: 945912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034113

RESUMEN

Deep brain stimulation (DBS) is a clinical intervention for the treatment of movement disorders. It has also been applied to the treatment of psychiatric disorders such as depression, anorexia nervosa, obsessive-compulsive disorder, and schizophrenia. Psychiatric disorders including schizophrenia, bipolar disorder, and major depression can lead to psychosis, which can cause patients to lose touch with reality. The ventral tegmental area (VTA), located near the midline of the midbrain, is an important region involved in psychosis. However, the clinical application of electrical stimulation of the VTA to treat psychotic diseases has been limited, and related mechanisms have not been thoroughly studied. In the present study, hyperlocomotion and stereotyped behaviors of the mice were employed to mimic and evaluate the positive-psychotic-like behaviors. We attempted to treat positive psychotic-like behaviors by electrically stimulating the VTA in mice and exploring the neural mechanisms behind behavioral effects. Local field potential recording and in vivo fiber photometry to observe the behavioral effects and changes in neural activities caused by DBS in the VTA of mice. Optogenetic techniques were used to verify the neural mechanisms underlying the behavioral effects induced by DBS. Our results showed that electrical stimulation of the VTA activates local gamma-aminobutyric acid (GABA) neurons, and dopamine (DA) neurons, reduces hyperlocomotion, and relieves stereotyped behaviors induced by MK-801 (dizocilpine) injection. The results of optogenetic manipulation showed that the activation of the VTA GABA neurons, but not DA neurons, is involved in the alleviation of hyperlocomotion and stereotyped behaviors. We visualized changes in the activity of specific types in specific brain areas induced by DBS, and explored the neural mechanism of DBS in alleviating positive psychotic-like behaviors. This preclinical study not only proposes new technical means of exploring the mechanism of DBS, but also provides experimental justification for the clinical treatment of psychotic diseases by electrical stimulation of the VTA.

7.
Sci Adv ; 7(49): eabg6611, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851665

RESUMEN

Balancing instant gratification versus delayed but better gratification is important for optimizing survival and reproductive success. Although delayed gratification has been studied through human psychological and brain activity monitoring and animal research, little is known about its neural basis. We successfully trained mice to perform a waiting-for-water-reward delayed gratification task and used these animals in physiological recording and optical manipulation of neuronal activity during the task to explore its neural basis. Our results showed that the activity of dopaminergic (DAergic) neurons in the ventral tegmental area increases steadily during the waiting period. Optical activation or silencing of these neurons, respectively, extends or reduces the duration of waiting. To interpret these data, we developed a reinforcement learning model that reproduces our experimental observations. Steady increases in DAergic activity signal the value of waiting and support the hypothesis that delayed gratification involves real-time deliberation.

8.
Materials (Basel) ; 14(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34501121

RESUMEN

The deformation behavior for highly purified Fe-17Cr alloy was investigated at 700~1000 °C and 0.5~10 s-1. The microstructure evolution and corresponding mechanism during deformation were studied in-depth, using electron backscattering diffraction, transmission electron microscopy and precession electron diffraction. During deformation, dynamic recrystallization (DRX) occurred, along with extensive dynamic recovery, and the active DRX mechanism depended on deformation conditions. At higher Zener-Hollomon parameter (Z ≥ 5.93 × 1027 s-1), the development of the shear band was promoted, and then continuous DRX was induced by the formation and intersection shear band. At lower Zener-Hollomon parameter (Z ≤ 3.10 × 1025 s-1), the nucleation of the new grain was attributed to the combination of continuous DRX by uniform increase in misorientation between subgrains and discontinuous DRX by grain boundary bulging, and with increasing temperature, the effect of the former became weaker, whereas the effect of the latter became stronger. The DRX grain size increased with the temperature. For alleviating ridging, it seems advantageous to activate the continuous DRX induced by shear band through hot deformation with higher Z. In addition, the modified Johnson-Cook and Arrhenius-type models by conventional way were developed, and the modified Johnson-Cook model was developed, using the proposed way, by considering strain dependency of the material parameters. The Arrhenius-type model was also modified by using the proposed way, through distinguishing stress levels for acquiring partial parameter and through employing peak stress to determine the activation energy and considering strain dependency of only other parameters for compensating strain. According to our comparative analyses, the modified Arrhenius-type model by the proposed approach, which is suggested to model hot-deformation behavior for metals having only ferrite, could offer a more accurate prediction of flow behavior as compared to other developed models.

9.
iScience ; 24(3): 102213, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33733073

RESUMEN

Morphine is commonly used to relieve moderate to severe pain, but repeated doses cause opioid tolerance. Here, we used ATP sensor and fiber photometry to detect prefrontal ATP level. It showed that prefrontal ATP level decreased after morphine injection and the event amplitude tended to decrease with continuous morphine exposure. Morphine had little effect on prefrontal ATP due to its tolerance. Therefore, we hypothesized that the analgesic effect of morphine might be related to ATP in the medial prefrontal cortex (mPFC). Moreover, local infusion of ATP partially antagonized morphine analgesia. Then we found that inhibiting P2X7R in the mPFC mimicked morphine analgesia. In morphine-tolerant mice, pretreatment with P2X4R or P2X7R antagonists in the mPFC enhanced analgesic effect. Our findings suggest that reduction of prefrontal purinergic signaling is necessary for the morphine analgesia, which help elucidate the mechanism of morphine analgesia and may lead to the development of new clinical treatments for neuropathic pain.

10.
EBioMedicine ; 65: 103272, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33691246

RESUMEN

BACKGROUND: Despite the fundamental clinical significance of general anaesthesia, the cortical mechanism underlying anaesthetic-induced loss of consciousness (aLOC) remains elusive. METHODS: Here, we measured the dynamics of two major cortical neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate, through in vivo two-photon imaging and genetically encoded neurotransmitter sensors in a cell type-specific manner in the primary visual (V1) cortex. FINDINGS: We found a general decrease in cortical GABA transmission during aLOC. However, the glutamate transmission varies among different cortical cell types, where in it is almost preserved on pyramidal cells and is significantly reduced on inhibitory interneurons. Cortical interneurons expressing vasoactive intestinal peptide (VIP) and parvalbumin (PV) specialize in disinhibitory and inhibitory effects, respectively. During aLOC, VIP neuronal activity was delayed, and PV neuronal activity was dramatically inhibited and highly synchronized. INTERPRETATION: These data reveal that aLOC resembles a cortical state with a disrupted excitatory-inhibitory network and suggest that a functional inhibitory network is indispensable in the maintenance of consciousness. FUNDING: This work was supported by the grants of the National Natural Science Foundation of China (grant nos. 81620108012 and 82030038 to H.D. and grant nos. 31922029, 61890951, and 61890950 to J.H.).


Asunto(s)
Anestésicos por Inhalación/farmacología , Ácido Glutámico/metabolismo , Isoflurano/farmacología , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Calcio/metabolismo , Electroencefalografía , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fluorescencia por Excitación Multifotónica , Parvalbúminas/metabolismo , Células Piramidales/citología , Células Piramidales/metabolismo , Inconsciencia , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo
11.
Neuropharmacology ; 177: 108237, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32710978

RESUMEN

Major depressive disorder (MDD) is a severe mental disorder with a high disability rate worldwide. Selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) are the most common agents for antidepressant use. SSRIs and SNRIs are believed to achieve antidepressant effects through the activation of serotonergic or noradrenergic systems. However, whether the dopaminergic system is involved remains unclear. In our study, a genetically encoded dopamine sensor and in vivo fiber photometry recordings were used to measure the dopamine concentrations in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) after acute intraperitoneal injection of SSRIs or SNRIs. Combined with the behavioral tests, we found that SNRIs increased dopamine concentrations in both the mPFC and the NAc and showed faster antidepressant effects than SSRIs. To verify the enhanced dopamine levels induce the faster antidepressant effects of SNRIs, we employed dopamine receptor antagonists to specifically block the dopaminergic function. The results showed that the faster antidepressant effects of SNRIs were weakened by the dopamine receptor antagonists. Altogether, our study reveals that SNRIs achieve faster antidepressant effects than SSRIs by elevating the dopamine concentrations in the mPFC and the NAc. Our work proposes further mechanisms for the first-line antidepressants, which provides more basis for clinical treatments. This article is part of the special issue on Stress, Addiction and Plasticity.


Asunto(s)
Antidepresivos/administración & dosificación , Depresión/metabolismo , Dopamina/metabolismo , Prosencéfalo/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Inhibidores de Captación de Serotonina y Norepinefrina/administración & dosificación , Animales , Depresión/tratamiento farmacológico , Depresión/psicología , Dopamina/análisis , Femenino , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Fotometría/métodos , Prosencéfalo/química , Prosencéfalo/efectos de los fármacos , Restricción Física/efectos adversos , Restricción Física/psicología , Resultado del Tratamiento
12.
Sci Bull (Beijing) ; 65(5): 389-401, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659230

RESUMEN

Organisms must make sense of a constant stream of sensory inputs from both internal and external sources which compete for attention by determining which ones are salient. The ability to detect and respond appropriately to potentially salient stimuli in the environment is critical to all organisms. However, the neural circuits that process salience are not fully understood. Here, we identify a population of glutamatergic neurons in the ventral pallidum (VP) that play a unique role in salience processing. Using cell-type-specific fiber photometry, we find that VP glutamatergic neurons are robustly activated by a variety of aversion- and reward-related stimuli, as well as novel social and non-social stimuli. Inhibition of the VP glutamatergic neurons reduces the ability to detect salient stimuli in the environment, such as aversive cue, novel conspecific and novel object. Besides, VP glutamatergic neurons project to both the lateral habenula (LHb) and the ventral tegmental area (VTA). Together, our findings demonstrate that the VP glutamatergic neurons participate in salience processing and therefore provide a new perspective on treating several neuropsychiatric disorders, including dementia and psychosis.

13.
Int J Oncol ; 56(1): 273-282, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31746368

RESUMEN

Oral squamous cell carcinoma (OSCC), the most common malignancy of the oral cavity, accounts for >90% of all diagnosed oral cancer cases. Baicalein, a naturally derived compound, has been shown to alter p65 and the nuclear factor (NF)­κB pathway, thus exerting cytotoxic effects on various tumor cell types. However, the mechanism of action of baicalein in OSCC has not been fully elucidated. In the present study, the proliferation of OSCC cells treated with baicalein was examined using a CCK­8 assay. The effects of baicalein on the cell cycle and apoptosis of OSCC cells were determined by flow cytometric analyses. The expression of specificity protein 1 (Sp1), p65 and p50 at the mRNA and protein levels was determined by reverse transcription­quantitative PCR and western blot analysis, respectively. The results of the present study demonstrated that baicalein suppresses the proliferation of OSCC cell lines in vivo and in vitro. Baicalein also induced apoptosis of OSCC cells and arrested the cell cycle at the G0/G1 phase. Baicalein inhibited the expression of Sp1, p65 and p50 by downregulating the relative mRNA levels. Baicalein reduced the activity of NF­κB in OSCC cells. Knockdown of Sp1 also resulted in reduced expression of p65 and p50. In addition, Sp1 silencing enhanced the effects of baicalein. In conclusion, the present study demonstrated that baicalein suppresses the growth of OSCC cells through an Sp1/NF­κB­dependent mechanism.


Asunto(s)
Antioxidantes/farmacología , Carcinoma de Células Escamosas/patología , Flavanonas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Boca/patología , Factor de Transcripción Sp1/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Factor de Transcripción Sp1/antagonistas & inhibidores , Factor de Transcripción Sp1/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Brain Res ; 1721: 146333, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31302097

RESUMEN

After associative learning, a signal induces the recall of its associated signal, or the other way around. This reciprocal retrieval of associated signals is essential for associative thinking and logical reasoning. For the cellular mechanism underlying this associative memory, we hypothesized that the formation of synapse innervations among coactivated sensory cortices and the recruitment of associative memory cells were involved in the integrative storage and reciprocal retrieval of associated signals. Our study indicated that the paired whisker and olfaction stimulations led to an odorant-induced whisker motion and a whisker-induced olfaction response, a reciprocal form of associative memory retrieval. In mice that showed the reciprocal retrieval of associated signals, their barrel and piriform cortical neurons became mutually innervated through their axon projection and new synapse formation. These piriform and barrel cortical neurons gained the ability to encode both whisker and olfaction signals based on synapse innervations from the innate input and the newly formed input. Therefore, the associated activation of sensory cortices by pairing input signals initiates their mutual synapse innervations, and the neurons innervated by new and innate synapses are recruited to be associative memory cells that encode these associated signals. Mutual synapse innervations among sensory cortices to recruit associative memory cells may compose the primary foundation for the integrative storage and reciprocal retrieval of associated signals. Our study also reveals that new synapses onto the neurons enable these neurons to encode memories to new specific signals.


Asunto(s)
Corteza Piriforme/fisiología , Corteza Somatosensorial/fisiología , Vibrisas/fisiología , Animales , Aprendizaje por Asociación/fisiología , China , Condicionamiento Clásico/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Ratones , Neuronas/fisiología , Odorantes , Sinapsis/fisiología
15.
Oncotarget ; 8(56): 95719-95740, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29221161

RESUMEN

Neural plasticity occurs in learning and memory. Coordinated plasticity at glutamatergic and GABAergic neurons during memory formation remains elusive, which we investigate in a mouse model of associative learning by cellular imaging and electrophysiology. Paired odor and whisker stimulations lead to whisker-induced olfaction response. In mice that express this cross-modal memory, the neurons in the piriform cortex are recruited to encode newly acquired whisker signal alongside innate odor signal, and their response patterns to these associated signals are different. There are emerged synaptic innervations from barrel cortical neurons to piriform cortical neurons from these mice. These results indicate the recruitment of associative memory cells in the piriform cortex after associative memory. In terms of the structural and functional plasticity at these associative memory cells in the piriform cortex, glutamatergic neurons and synapses are upregulated, GABAergic neurons and synapses are downregulated as well as their mutual innervations are refined in the coordinated manner. Therefore, the associated activations of sensory cortices triggered by their input signals induce the formation of their mutual synapse innervations, the recruitment of associative memory cells and the coordinated plasticity between the GABAergic and glutamatergic neurons, which work for associative memory cells to encode cross-modal associated signals in their integration, associative storage and distinguishable retrieval.

16.
Medicine (Baltimore) ; 96(6): e5980, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28178139

RESUMEN

Some controversies still exist between the detection of Epstein-Barr virus (EBV)'s DNA and risks of periodontal diseases. Hence, a comprehensive meta-analysis on all available literatures was performed to clarify the relationship between EBV and preidontitis.A comprehensive search was conducted within the PUBMED, EMBASE, and WANFANG databases up to October 10th, 2016 according to inclusion and exclusion criteria and finally 21 case-control literatures were obtained. The outcomes including odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Publication bias was determined by Begg or Egger test. Sensitivity analysis was used to investigate reliability and stability of the results.According to the data from included trials, the association between overall increased risks of periodontitis and the detection of EBV was significant (OR = 6.199, 95% CI = 3.119-12.319, P < 0.001). In the disease-type analysis, the pooled ORs for chronic periodontitis and aggressive periodontitis were 6.586 (95% CI = 3.042-14.262, P < 0.001) and 8.361 (95% CI = 2.109-33.143, P = 0.003), respectively. In the subgroup analysis of ethnicity, our results suggested that high EBV-detecting frequencies were correlated with increased risks of periodontitis in Asians, Europeans, and Americans (P < 0.001). Subgroup analysis by the sample type showed that subgingival plaque (SgP) samples and tissue samples were available for EBV detecting (P < 0.001). Detecting EBV of samples in ≥5 (6) mm sites of periodontal pockets were easier than in ≤3-mm sites (P = 0.023).This meta-analysis indicates that high frequent detection of EBV correlates with increased risk of periodontal diseases. SgP and tissue are available for detecting EBV in patients of periodontitis. At last, our results suggest that detecting EBV of samples in =5 (6) mm sites of periodontal pockets are more sensitive than in ≤3-mm sites.


Asunto(s)
Herpesvirus Humano 4 , Periodontitis/virología , Estudios de Casos y Controles , Humanos
17.
Front Cell Neurosci ; 10: 285, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018178

RESUMEN

Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex (CBC) were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveal the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.

18.
Neural Plast ; 2016: 5648390, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28070425

RESUMEN

Neural plasticity is associated with memory formation. The coordinated refinement and interaction between cortical glutamatergic and GABAergic neurons remain elusive in associative memory, which we examine in a mouse model of associative learning. In the mice that show odorant-induced whisker motion after pairing whisker and odor stimulations, the barrel cortical glutamatergic and GABAergic neurons are recruited to encode the newly learnt odor signal alongside the innate whisker signal. These glutamatergic neurons are functionally upregulated, and GABAergic neurons are refined in a homeostatic manner. The mutual innervations between these glutamatergic and GABAergic neurons are upregulated. The analyses by high throughput sequencing show that certain microRNAs related to regulating synapses and neurons are involved in this cross-modal reflex. Thus, the coactivation of the sensory cortices through epigenetic processes recruits their glutamatergic and GABAergic neurons to be the associative memory cells as well as drive their coordinated refinements toward the optimal state for the storage of the associated signals.


Asunto(s)
Aprendizaje por Asociación/fisiología , Neuronas GABAérgicas/fisiología , Ácido Glutámico/fisiología , Plasticidad Neuronal/fisiología , Corteza Somatosensorial/fisiología , Vibrisas/fisiología , Animales , Neuronas GABAérgicas/química , Ratones , Ratones Endogámicos C57BL , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Técnicas de Cultivo de Órganos , Estimulación Física/métodos , Corteza Somatosensorial/química
19.
Front Cell Neurosci ; 9: 320, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26347609

RESUMEN

Associative learning and memory are essential to logical thinking and cognition. How the neurons are recruited as associative memory cells to encode multiple input signals for their associated storage and distinguishable retrieval remains unclear. We studied this issue in the barrel cortex by in vivo two-photon calcium imaging, electrophysiology, and neural tracing in our mouse model that the simultaneous whisker and olfaction stimulations led to odorant-induced whisker motion. After this cross-modal reflex arose, the barrel and piriform cortices connected. More than 40% of barrel cortical neurons became to encode odor signal alongside whisker signal. Some of these neurons expressed distinct activity patterns in response to acquired odor signal and innate whisker signal, and others encoded similar pattern in response to these signals. In the meantime, certain barrel cortical astrocytes encoded odorant and whisker signals. After associative learning, the neurons and astrocytes in the sensory cortices are able to store the newly learnt signal (cross-modal memory) besides the innate signal (native-modal memory). Such associative memory cells distinguish the differences of these signals by programming different codes and signify the historical associations of these signals by similar codes in information retrievals.

20.
Mol Brain ; 6: 2, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23286328

RESUMEN

Loss of a sensory input causes the hypersensitivity in other modalities. In addition to cross-modal plasticity, the sensory cortices without receiving inputs undergo the plastic changes. It is not clear how the different types of neurons and synapses in the sensory cortex coordinately change after input deficits in order to prevent loss of their functions and to be used for other modalities. We studied this subject in the barrel cortices from whiskers-trimmed mice vs. controls. After whisker trimming for a week, the intrinsic properties of pyramidal neurons and the transmission of excitatory synapses were upregulated in the barrel cortex, but inhibitory neurons and GABAergic synapses were downregulated. The morphological analyses indicated that the number of processes and spines in pyramidal neurons increased, whereas the processes of GABAergic neurons decreased in the barrel cortex. The upregulation of excitatory neurons and the downregulation of inhibitory neurons boost the activity of network neurons in the barrel cortex to be high levels, which prevent the loss of their functions and enhances their sensitivity to sensory inputs. These changes may prepare for attracting the innervations from sensory cortices and/or peripheral nerves for other modalities during cross-modal plasticity.


Asunto(s)
Regulación hacia Abajo , Inhibición Neural/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Regulación hacia Arriba , Vibrisas/inervación , Vibrisas/metabolismo , Potenciales de Acción/fisiología , Animales , Dendritas/fisiología , Neuronas GABAérgicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Piramidales/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...