Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269285

RESUMEN

Methane, a byproduct of agricultural activities, has shown potential as a nonedible substrate for biomanufacturing. The production of succinate by a methanotrophic bacterium utilizing methane presents an innovative route for the sustainable synthesis of chemicals. In this study, Methylotuvimicrobium buryatense 5GB1S was genetically modified through the reconstruction of an artificial serine cycle to enable the bioconversion of both methane and CO2 into succinate. The 13C labeling analysis confirmed the CO2 fixing in M. buryatense 5GB1S, leading to a 46% improvement in carbon conversion efficiency and a 107% increase in succinate production compared to the wild-type strain. The transcriptome data on carbon metabolisms was assessed to guide future optimizations for strengthening the overall carbon flux from methane to succinate. Finally, the maximum succinate titer of 299.36 mg/L was achieved under oxygen-limited conditions in 3 L bioreactors, which resulted in the volumetric productivity of 199.60 mg/L/day, representing a 23-fold enhancement compared to the wild-type strain. This study offers a new strategy for upcycling greenhouse gases into succinate in a sustainable manner through methanotrophic-based biomanufacturing.

2.
Mikrochim Acta ; 191(2): 93, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217686

RESUMEN

A colorimetric strategy has been developed for the detection of alkaline phosphatase (ALP) activity based on the off-on effect of the catalytic activity of light-responsive oxidase mimics covalent organic framework (Cu-TpBpy-COF) in near-neutral condition. Cu-TpBpy-COF can effectively catalyze the oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen to form a blue oxidized product (oxTMB) with an absorption peak at 652 nm. Cu2+ is the active center of Cu-TpBpy-COF and pyrophosphate (PPi) can form a complex with Cu2+ to weaken the catalytic activity of Cu-TpBpy-COF. In the presence of ALP, PPi is hydrolyzed into orthophosphates (Pi) with low affinity to Cu2+, thus resulting in absorbance restoration. The absorbance at 652 nm is related to ALP activity in the linear range 10-150 U·L-1 with a detection limit of 7.17 U·L-1. The recoveries of ALP in serum samples are in the range 94.7~107.0% with relative standard deviations (RSD) lower than 5%. The decisive role of Cu2+ on the enhancing catalytic activities of Cu-TpBpy-COF in neutral condition was verified by TpBpy-COF and TpBD-COF as controls, in which the main difference between them is that TpBpy-COF contains pyridine nitrogen. Upon Cu2+ modification, Cu-TpBpy-COF has better catalytic activity than TpBpy-COF in a broader pH range because of the in situ generation of Cu+ under irradiation.


Asunto(s)
Estructuras Metalorgánicas , Oxidorreductasas , Fosfatasa Alcalina , Colorimetría/métodos , Oxidación-Reducción , Colorantes
3.
Anal Bioanal Chem ; 414(23): 6989-7000, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35982252

RESUMEN

Uracil DNA glycosylase (UDG) and human alkyladenine DNA glycosylase (hAAG) are the important DNA glycosylases for initiating the repair of DNA damage, and the aberrant expression of DNA glycosylases is closely associated with various diseases, such as Parkinson's disease, several cancers, and human immunodeficiency. The simultaneous detection of UDG and hAAG is helpful for the study of early clinical diagnosis. However, the reported methods for multiple DNA glycosylase assay suffer from the application of an expensive single-molecule instrument, labor-tedious magnetic separation, and complicated design. Herein, we develop a simple fluorescence method with only three necessary DNA strands for the selective and sensitive detection of multiple DNA glycosylase activity based on the generation of 3'-OH terminal-triggered encoding of multicolor fluorescence. The method can achieve the detection limits of 5.5 × 10-5 U/mL for UDG and 3.3 × 10-3 U/mL for hAAG, which are lower than those of the reported fluorescence methods. Moreover, it can be further used to detect multiple DNA glycosylases in the human cervical carcinoma cell line (HeLa cells), normal human renal epithelial cells (293 T cells), and biological fluid and measure the enzyme kinetic parameters of UDG and hAAG.


Asunto(s)
ADN , Uracil-ADN Glicosidasa , Fluorescencia , Células HeLa , Humanos
4.
Artículo en Inglés | MEDLINE | ID: mdl-32318556

RESUMEN

The methane (CH4)/oxygen (O2) gas supply ratios significantly affect the cell growth and metabolic pathways of aerobic obligate methanotrophs. However, few studies have explored the CH4/O2 ratios of the inlet gas, especially for the CH4 concentrations within the explosion range (5∼15% of CH4 in air). This study thoroughly investigated the molecular mechanisms associated with the impact of different CH4/O2 ratios on cell growth of a model type I methanotroph Methylomicrobium buryatense 5GB1 cultured at five different CH4/O2 supply molar ratios from 0.28 to 5.24, corresponding to CH4 content in gas mixture from 5% to 50%, using RNA-Seq transcriptomics approach. In the batch cultivation, the highest growth rate of 0.287 h-1 was achieved when the CH4/O2 supply molar ratio was 0.93 (15% CH4 in air), and it is crucial to keep the availability of carbon and oxygen levels balanced for optimal growth. At this ratio, genes related to methane metabolism, phosphate uptake system, and nitrogen fixation were significantly upregulated. The results indicated that the optimal CH4/O2 ratio prompted cell growth by increasing genes involved in metabolic pathways of carbon, nitrogen and phosphate utilization in M. buryatense 5GB1. Our findings provided an effective gas supply strategy for methanotrophs, which could enhance the production of key intermediates and enzymes to improve the performance of bioconversion processes using CH4 as the only carbon and energy source. This research also helps identify genes associated with the optimal CH4/O2 ratio for balancing energy metabolism and carbon flux, which could be candidate targets for future metabolic engineering practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA