Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Med Genet A ; 194(6): e63555, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38326731

RESUMEN

Heterozygous pathogenic variants in KDM6B have recently been associated to a rare neurodevelopmental disorder referred to as "Neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities" and characterized by non-pathognomonic facial and body dysmorphisms, a wide range of neurodevelopmental and behavioral disorders and nonspecific neuroradiological findings. KDM6B encodes a histone demethylase, expressed in different tissues during development, which regulates gene expression through the modulation of chromatin accessibility by RNA polymerase. We herein describe a 11-year-old male patient carrying a novel de novo pathogenic variant in KDM6B exhibiting facial dysmorphisms, dysgraphia, behavioral traits relatable to oppositional defiant, autism spectrum, and attention deficit hyperactivity disorders, a single seizure episode, and a neuroimaging finding of a single cerebellar heterotopic nodule, never described to date in this genetic condition. These findings expand the phenotypic spectrum of this syndrome, highlighting the potential role for KDM6B in cerebellar development and providing valuable insights for genetic counseling.


Asunto(s)
Cerebelo , Histona Demetilasas con Dominio de Jumonji , Trastornos del Neurodesarrollo , Humanos , Masculino , Niño , Histona Demetilasas con Dominio de Jumonji/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Cerebelo/anomalías , Cerebelo/patología , Cerebelo/diagnóstico por imagen , Fenotipo , Mutación/genética
3.
Clin Immunol ; 249: 109299, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963449

RESUMEN

Aicardi-Goutières Syndrome (AGS) is a rare neuro-inflammatory disease characterized by increased expression of interferon-stimulated genes (ISGs). Disease-causing mutations are present in genes associated with innate antiviral responses. Disease presentation and severity vary, even between patients with identical mutations from the same family. This study investigated DNA methylation signatures in PBMCs to understand phenotypic heterogeneity in AGS patients with mutations in RNASEH2B. AGS patients presented hypomethylation of ISGs and differential methylation patterns (DMPs) in genes involved in "neutrophil and platelet activation". Patients with "mild" phenotypes exhibited DMPs in genes involved in "DNA damage and repair", whereas patients with "severe" phenotypes had DMPs in "cell fate commitment" and "organ development" associated genes. DMPs in two ISGs (IFI44L, RSAD2) associated with increased gene expression in patients with "severe" when compared to "mild" phenotypes. In conclusion, altered DNA methylation and ISG expression as biomarkers and potential future treatment targets in AGS.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Metilación de ADN , Expresión Génica , Índice de Severidad de la Enfermedad , Malformaciones del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , Interferones/genética , Mutación , Biomarcadores , Estudios de Casos y Controles
4.
Front Endocrinol (Lausanne) ; 14: 1152237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998476

RESUMEN

Introduction: Aicardi-Goutières Syndrome (AGS) is a rare encephalopathy with early onset that can be transmitted in both dominant and recessive forms. Its phenotypic covers a wide range of neurological and extraneurological symptoms. Nine genes that are all involved in nucleic acids (NAs) metabolism or signaling have so far been linked to the AGS phenotype. Recently, a link between autoimmune or neurodegenerative conditions and mitochondrial dysfunctions has been found. As part of the intricate system of epigenetic control, the mtDNA goes through various alterations. The displacement (D-loop) region represents one of the most methylated sites in the mtDNA. The term "mitoepigenetics" has been introduced as a result of increasing data suggesting that epigenetic processes may play a critical role in the control of mtDNA transcription and replication. Since we showed that RNASEH2B and RNASEH2A-mutated Lymphoblastoid Cell Lines (LCLs) derived from AGS patients had mitochondrial alterations, highlighting changes in the mtDNA content, the main objective of this study was to examine any potential methylation changes in the D-loop regulatory region of mitochondria and their relationship to the mtDNA copy number in peripheral blood cells of AGS patients with mutations in various AGS genes and healthy controls. Materials and methods: We collected blood samples from 25 AGS patients and we performed RT-qPCR to assess the mtDNA copy number and pyrosequencing to measure DNA methylation levels in the D-loop region. Results: Comparing AGS patients to healthy controls, D-loop methylation levels and mtDNA copy number increased significantly. We also observed that in AGS patients, the mtDNA copy number increased with age at sampling, but not the D-loop methylation levels, and there was no relationship between sex and mtDNA copy number. In addition, the D-loop methylation levels and mtDNA copy number in the AGS group showed a non-statistically significant positive relation. Conclusion: These findings, which contradict the evidence for an inverse relationship between D-loop methylation levels and mtDNA copy number, show that AGS patients have higher D-loop methylation levels than healthy control subjects. Additional research is needed to identify the function of these features in the etiology and course of AGS.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , ADN Mitocondrial/genética , Mitocondrias/genética , Metilación de ADN
5.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430958

RESUMEN

Aicardi-Goutières syndrome (AGS) is a rare encephalopathy characterized by neurological and immunological features. Mitochondrial dysfunctions may lead to mitochondrial DNA (mtDNA) release and consequent immune system activation. We investigated the role of mitochondria and mtDNA in AGS pathogenesis by studying patients mutated in RNASEH2B and RNASEH2A genes. Lymphoblastoid cell lines (LCLs) from RNASEH2A- and RNASEH2B-mutated patients and healthy control were used. Transmission Electron Microscopy (TEM) and flow cytometry were used to assess morphological alterations, reactive oxygen species (ROS) production and mitochondrial membrane potential variations. Seahorse Analyzer was used to investigate metabolic alterations, and mtDNA oxidation and VDAC1 oligomerization were assessed by immunofluorescence. Western blot and RT-qPCR were used to quantify mtTFA protein and mtDNA release. Morphological alterations of mitochondria were observed in both mutated LCLs, and loss of physiological membrane potential was mainly identified in RNASEH2A LCLs. ROS production and 8-oxoGuanine levels were increased in RNASEH2B LCLs. Additionally, the VDAC1 signal was increased, suggesting a mitochondrial pore formation possibly determining mtDNA release. Indeed, higher cytoplasmic mtDNA levels were found in RNASEH2B LCLs. Metabolic alterations confirmed mitochondrial damage in both LCLs. Data highlighted mitochondrial alterations in AGS patients' LCLs suggesting a pivotal role in AGS pathogenesis.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Humanos , Especies Reactivas de Oxígeno/metabolismo , Malformaciones del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
6.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269723

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients' stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/metabolismo
7.
Front Cell Dev Biol ; 9: 746145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746142

RESUMEN

Background: Psoriasis is a T cell-mediated chronic autoimmune/inflammatory disease. While some patients experience disease limited to the skin (skin psoriasis), others develop joint involvement (psoriatic arthritis; PsA). In the absence of disease- and/or outcome-specific biomarkers, and as arthritis can precede skin manifestations, diagnostic and therapeutic delays are common and contribute to disease burden and damage accrual. Objective: Altered epigenetic marks, including DNA methylation, contribute to effector T cell phenotypes and altered cytokine expression in autoimmune/inflammatory diseases. This project aimed at the identification of disease-/outcome-specific DNA methylation signatures in CD8+ T cells from patients with psoriasis and PsA as compared to healthy controls. Method: Peripheral blood CD8+ T cells from nine healthy controls, 10 psoriasis, and seven PsA patients were collected to analyze DNA methylation marks using Illumina Human Methylation EPIC BeadChips (>850,000 CpGs per sample). Bioinformatic analysis was performed using R (minfi, limma, ChAMP, and DMRcate packages). Results: DNA methylation profiles in CD8+ T cells differentiate healthy controls from psoriasis patients [397 Differentially Methylated Positions (DMPs); 9 Differentially Methylated Regions (DMRs) when ≥CpGs per DMR were considered; 2 DMRs for ≥10 CpGs]. Furthermore, patients with skin psoriasis can be discriminated from PsA patients [1,861 DMPs, 20 DMRs (≥5 CpGs per region), 4 DMRs (≥10 CpGs per region)]. Gene ontology (GO) analyses considering genes with ≥1 DMP in their promoter delivered methylation defects in skin psoriasis and PsA primarily affecting the BMP signaling pathway and endopeptidase regulator activity, respectively. GO analysis of genes associated with DMRs between skin psoriasis and PsA demonstrated an enrichment of GABAergic neuron and cortex neuron development pathways. Treatment with cytokine blockers associated with DNA methylation changes [2,372 DMPs; 1,907 DMPs within promoters, 7 DMRs (≥5 CpG per regions)] affecting transforming growth factor beta receptor and transmembrane receptor protein serine/threonine kinase signaling pathways. Lastly, a methylation score including TNF and IL-17 pathway associated DMPs inverse correlates with skin disease activity scores (PASI). Conclusion: Patients with skin psoriasis exhibit DNA methylation patterns in CD8+ T cells that allow differentiation from PsA patients and healthy individuals, and reflect clinical activity of skin disease. Thus, DNA methylation profiling promises potential as diagnostic and prognostic tool to be used for molecular patient stratification toward individualized treatment.

8.
Genomics ; 113(6): 4039-4051, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34662711

RESUMEN

The multitasking nature of lncRNAs allows them to play a central role in both physiological and pathological conditions. Often the same lncRNA can participate in different diseases. Specifically, the MYC-induced Long non-Coding RNA MINCR is upregulated in various cancer types, while downregulated in Amyotrophic Lateral Sclerosis patients. Therefore, this work aims to investigate MINCR potential mechanisms of action and its implications in cancer and neurodegeneration in relation to its expression levels in SH-SY5Y cells through RNA-sequencing approach. Our results show that MINCR overexpression causes massive alterations in cancer-related genes, leading to disruption in many fundamental processes, such as cell cycle and growth factor signaling. On the contrary, MINCR downregulation influences a small number of genes involved in different neurodegenerative disorders, mostly concerning RNA metabolism and inflammation. Thus, understanding the cause and functional consequences of MINCR deregulation gives important insights on potential pathogenetic mechanisms both in cancer and in neurodegeneration.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Oncogenes , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal
9.
Front Immunol ; 12: 672952, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981319

RESUMEN

Aicardi-Goutières Syndrome (AGS) is a rare disorder characterized by neurological and immunological signs. In this study we have described a child with a phenotype consistent with AGS carrying a novel compound heterozygous mutation in RNASEH2B gene. Next Generation Sequencing revealed two heterozygous variants in RNASEH2B gene. We also highlighted a reduction of RNase H2B transcript and protein levels in all the family members. Lower protein levels of RNase H2A have been observed in all the members of the family as well, whereas a deep depletion of RNase H2C has only been identified in the affected child. The structural analysis showed that both mutations remove many intramolecular contacts, possibly introducing conformational rearrangements with a decrease of the stability of RNase H2B and strongly destabilizing the RNase H2 complex. Taken together, these results highlight the importance of an integrated diagnostic approach which takes into consideration clinical, genetic, and molecular analyses.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/genética , Ribonucleasa H/genética , Humanos , Lactante , Masculino , Mutación
11.
Metab Brain Dis ; 36(5): 859-863, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33721182

RESUMEN

Aicardi-Goutières Syndrome (AGS) is a monogenic leukodystrophy with pediatric onset, clinically characterized by a variable degree of neurologic impairment. It belongs to a group of condition called type I interferonopathies that are characterized by abnormal overproduction of interferon alpha, an inflammatory cytokine which action is mediated by the activation of two of the four human Janus Kinases. Thanks to an ever-increasing knowledge of the molecular basis and pathogenetic mechanisms of the disease, Janus Kinase inhibitors (JAKIs) have been proposed as a treatment option for selected interferonopathies. Here we reported the 24 months follow-up of the fifth AGS patient treated with ruxolitinib described so far in literature. The treatment was globally well tolerated; clinical examinations and radiological images demonstrated a progressively improving course. It is however to note that patients presenting with mild and spontaneously improving course have been reported. Large natural history studies on AGS spectrum are strongly required in order to get a better understanding of the results emerging from ongoing therapeutic trials on such rare disease.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Malformaciones del Sistema Nervioso/tratamiento farmacológico , Nitrilos/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico por imagen , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Resultado del Tratamiento
12.
J Clin Med ; 8(5)2019 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-31130681

RESUMEN

Aicardi-Goutières syndrome (AGS) is a genetically determined early onset encephalopathy characterized by cerebral calcification, leukodystrophy, and increased expression of interferon-stimulated genes (ISGs). Up to now, seven genes (TREX1, RNASEH2B, RNASEH2C, RNASEH2A, ADAR1, SAMHD1, IFIH1) have been associated with an AGS phenotype. Next Generation Sequencing (NGS) analysis was performed on 51 AGS patients and interferon signature (IS) was investigated in 18 AGS patients and 31 healthy controls. NGS identified mutations in 48 of 51 subjects, with three patients demonstrating a typical AGS phenotype but not carrying mutations in known AGS-related genes. Five mutations, in RNASEH2B, SAMHD1 and IFIH1 gene, were not previously reported. Eleven patients were positive and seven negatives for the upregulation of interferon signaling (IS > 2.216). This work presents, for the first time, the genetic data of an Italian cohort of AGS patients, with a higher percentage of mutations in RNASEH2B and a lower frequency of mutations in TREX1 than those seen in international series. RNASEH2B mutated patients showed a prevalence of negative IS consistent with data reported in the literature. We also identified five novel pathogenic mutations that warrant further functional investigation. Exome/genome sequencing will be performed in future studies in patients without a mutation in AGS-related genes.

13.
Medicine (Baltimore) ; 97(52): e13893, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30593198

RESUMEN

Tetraparesis is usually due to cerebral palsy (CP), inborn errors of metabolism, neurogenetic disorders and spinal cord lesions. However, literature data reported that about 10% of children with tetraparesis show a negative/non-specific neuroradiological findings without a specific etiological cause. Aicardi Goutières Syndrome (AGS) is a genetic encephalopathy that may cause tetraparesis. Interferon signature is a reliable biomarker for AGS and could be performed in sine-causa tetraparesis. The aim of the study was to examine the type I interferon signature and AGS related-genes in children with sine causa tetraparesis, to look for misdiagnosed AGS. A secondary aim was to determine which aspects of the patient history, clinical picture and brain imaging best characterize tetraparesis due to an interferonopathy.Seven out of 78 patients affected by tetraparesis, characterized by unremarkable pre-peri-postnatal history and normal/non-specific brain magnetic resonance imaging (MRI) were selected and underwent anamnestic data collection, clinical examination, brain imaging review, peripheral blood interferon signature and AGS-related genes analysis.At our evaluation time (mean age of 11.9 years), all the 7 patients showed spastic-dystonic tetraparesis. At clinical onset brain MRI was normal in 4 and with non-specific abnormalities in 3; at follow-up 3 patients presented with new white-matter lesions, associated with brain calcification in 1 case. Interferon signature was elevated in one subject who presented also a mutation of the IFIH1 gene.AGS should be considered in sine-causa tetraparesis. Core features of interferonopathy-related tetraparesis are: onset during first year of life, psychomotor regression with tetraparesis evolution, brain white-matter lesions with late calcifications. A positive interferon signature may be a helpful marker to select patients with spastic tetraparesis who should undergo genetic analysis for AGS.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/complicaciones , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Interferón Tipo I/biosíntesis , Malformaciones del Sistema Nervioso/complicaciones , Malformaciones del Sistema Nervioso/diagnóstico , Paresia/etiología , Adolescente , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico por imagen , Enfermedades Autoinmunes del Sistema Nervioso/genética , Biomarcadores , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Interferón Tipo I/sangre , Interferón Tipo I/genética , Imagen por Resonancia Magnética , Masculino , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/genética , Proyectos Piloto , Adulto Joven
14.
Phys Med Rehabil Clin N Am ; 29(1): 139-154, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29173659

RESUMEN

Facet or zygapophysial joint pain is commonly seen in the aging population. Interventional procedures, such as facet joint nerve blocks, facet intraarticular injections, and radiofrequency denervation, are used for the diagnosis and treatment of axial spinal chronic neck and low back pain. The focus of this article is to understand how radiofrequency denervation works in the cervical and lumbar spine and to be able to properly select appropriate patients who might benefit from this safe and effective procedure.


Asunto(s)
Artralgia/cirugía , Dolor de Espalda/cirugía , Desnervación/métodos , Dolor de Cuello/cirugía , Vértebras Cervicales , Desnervación/instrumentación , Humanos , Vértebras Lumbares , Dolor Referido/cirugía , Terapia por Radiofrecuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...