Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 566-567: 1649-1659, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27328878

RESUMEN

Amphipods are one of the most important components of freshwater ecosystems. Among them, gammarids are the most widespread group in Europe and are often used as bioindicators and model organisms in ecotoxicology. However, their use, especially of Gammarus fossarum for the study of the environmental impact of nanoparticles, has been rather limited so far. G. fossarum was selected to assess effects of well-characterized chemically synthesized silver nanoparticles (AgNPs 20nm and 200nm) and "green" laboratory synthetized (from plant leaf extracts) AgNPs (AgNPs 23nm and 27nm). AgNO3 was used as a positive control to compare AgNPs effects and silver ions effects. A multibiomarker approach was used to investigate the sub-lethal effects of AgNPs on physiological and behavioural responses of G. fossarum. Two different experiments were carried out. In a preliminary experiment, two populations of G. fossarum (G.f1 and G.f2) were tested for sensitivity differences and the most sensitive one was exposed, in a final experiment, to sub-lethal concentrations of AgNO3 and the most toxic AgNPs. AgNO3 and AgNPs 23nm led to a significant decrease in survival rates, osmoregulation and locomotor activity. Ag internalisation, performed with Secondary Ion Mass Spectrometry (SIMS), showed the presence of silver in gills of G.f2 exposed to AgNPs 23 and 27nm. This study highlighted the influence of method of synthesis on ion release, uptake and toxic effects of AgNPs on G. fossarum. Osmoregulation appeared to be an effective biomarker indicating the physiological health status of G. fossarum. Locomotor activity, which was the most impacted response, reflects the potential effects of released ions from AgNPs 23nm at the population level as locomotion is necessary for foraging, finding mates and escaping from predators. Therefore, we propose G. fossarum as a suitable model for environmental nanotoxicology, providing information both at individual and population levels.


Asunto(s)
Anfípodos/efectos de los fármacos , Ecotoxicología/métodos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Francia , Agua Dulce , Luxemburgo , Masculino , Modelos Animales , Pruebas de Toxicidad
2.
Nanotoxicology ; 10(7): 935-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26830045

RESUMEN

Exposures in realistic environmental conditions are essential to properly assess the effects of emerging pollutants on ecosystems. While ceria nanoparticles (nCeO2) production and use are expanding quickly, ecotoxicity studies remain very scarce. In this study, we set up experimental systems reproducing a simplified ecosystem to assess the effects of a chronic exposure to citrate-coated nCeO2 (ci-CeO2) and bare nCeO2 (ba-CeO2) on the freshwater mussel Dreissena polymorpha using an integrated multibiomarker approach. The fate of nanoparticles was tightly monitored to properly characterize the exposure. Organisms were exposed for 3 weeks and sampled weekly for biomarker analysis. Mussel filter-feeding activity resulted in significant removal of nCeO2 from the water column. At the same time, bioaccumulation was low, reaching its maximum in the first week. Mussels bioaccumulated ci-CeO2 three times more than ba-CeO2, probably due to coating-related differences in their behavior in the water column and in organisms. Meanwhile, biomarker results were integrated and synthesized using linear discriminant analysis, highlighting that pi-glutathione-S-transferase (piGST) mRNA, catalase (CAT) activity and lysosomal system were the most impacted of the seven biomarkers singled out by the discriminant analysis. These biomarker responses indicated that mussels exposed to both forms of nCeO2 were stressed and differentiate from the controls. Moreover, they responded differently to ba-CeO2 and ci-CeO2 exposure. However, biomarkers used in the experimental conditions of this study did not indicate severe nCeO2 toxicity on mussels, as cellular damage biomarkers and mussel filtering activity were left unimpaired. However, further studies are needed to investigate if the slight perturbations observed could lead to populational impacts in the long term.


Asunto(s)
Cerio/toxicidad , Dreissena/efectos de los fármacos , Agua Dulce/química , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Cerio/química , Cerio/metabolismo , Dreissena/metabolismo , Ecosistema , Nanopartículas/química , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...