Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38785957

RESUMEN

RAMOSA1 (RA1) is a Cys2-His2-type (C2H2) zinc finger transcription factor that controls plant meristem fate and identity and has played an important role in maize domestication. Despite its importance, the origin of RA1 is unknown, and the evolution in plants is only partially understood. In this paper, we present a well-resolved phylogeny based on 73 amino acid sequences from 48 embryophyte species. The recovered tree topology indicates that, during grass evolution, RA1 arose from two consecutive SUPERMAN duplications, resulting in three distinct grass sequence lineages: RA1-like A, RA1-like B, and RA1; however, most of these copies have unknown functions. Our findings indicate that RA1 and RA1-like play roles in the nucleus despite lacking a traditional nuclear localization signal. Here, we report that copies diversified their coding region and, with it, their protein structure, suggesting different patterns of DNA binding and protein-protein interaction. In addition, each of the retained copies diversified regulatory elements along their promoter regions, indicating differences in their upstream regulation. Taken together, the evidence indicates that the RA1 and RA1-like gene families in grasses underwent subfunctionalization and neofunctionalization enabled by gene duplication.


Asunto(s)
Evolución Molecular , Filogenia , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Embryophyta/genética , Embryophyta/metabolismo , Secuencia de Aminoácidos
2.
Mol Immunol ; 151: 193-203, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36166900

RESUMEN

The structural and dynamic changes introduced during antibody humanization continue to be a topic open to new contributions. For this reason, the study of structural and functional changes of a murine scFv (mu.scFv) anti-rhIFN-α2b after humanization was carried out. As it was shown by long molecular dynamics simulations and circular dichroism analysis, changes in primary sequence affected the tertiary structure of the humanized scFv (hz.scFv): the position of the variable domain of light chain (VL) respective to the variable domain of heavy chain (VH) in each scFv molecule was different. This change mainly impacted on conformation and dynamics of the complementarity-determining region 3 of VH (CDR-H3) which led to changes in the specificity and affinity of humanized scFv (hz.scFv). These observations agree with experimental results that showed a decrease in the antigen-binding strength of hz.scFv, and different capacities of these molecules to neutralize the in vitro rhIFN-α2b biological activity. Besides, experimental studies to characterize antigen-antibody binding showed that mu.scFv and hz.scFv bind to the same antigen area and recognize a conformational epitope, which is evidence of docking results. Finally, the differences between these molecules to neutralize the in vitro rhIFN-α2b biological activity were described as a consequence of the blockade of certain functionally relevant amino acids of the cytokine, after scFv binding. All these observations confirmed that humanization affected the affinity and specificity of hz.scFv and pointed out that two specific changes in the frameworks would be responsible.


Asunto(s)
Antígenos , Regiones Determinantes de Complementariedad , Aminoácidos , Animales , Regiones Determinantes de Complementariedad/química , Citocinas , Epítopos , Ratones
3.
Mol Immunol ; 90: 143-149, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28755586

RESUMEN

The Cys residues are almost perfectly conserved in all antibodies. They contribute significantly to the antibody fragment stability. The relevance of two natural contiguous Cys residues of an anti-recombinant human-follicle stimulation hormone (rhFSH) in a format of single-chain variable fragment (scFv) was studied. This scFv contains 5 Cys residues: VH22 and VH92 in the variable heavy chain (VH) and VL23, VL87 and VL88 in the variable light chain (VL). The influence of two unusual contiguous Cys at positions VL87 and VL88 was studied by considering the wild type fragment and mutant variants: VL-C88S, VL-C87S, VL-C87Y. The analysis was carried out using antigen-binding ability measurement by indirect specific ELISA and a detailed molecular modeling that comprises homology methods, long molecular dynamics simulations and docking. We found that VL-C87 affected the antibody fragment stability without interfering with the disulfide bond formation. The effect of mutating the VL-C87 by a usual residue at this position like Tyr caused distant structural changes at the VH region that confers a higher mobility to the VH-CDR2 and VH-CDR3 loops improving the scFv binding to the antigen.


Asunto(s)
Cisteína/química , Hormona Folículo Estimulante Humana/inmunología , Región Variable de Inmunoglobulina/inmunología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Anticuerpos de Cadena Única/inmunología , Secuencia de Aminoácidos , Afinidad de Anticuerpos/genética , Afinidad de Anticuerpos/inmunología , Reacciones Antígeno-Anticuerpo/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/química , Conformación Molecular , Alineación de Secuencia
4.
J Phys Chem B ; 120(13): 3414-24, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26991880

RESUMEN

Atomistic molecular dynamic simulations were performed to study the structure of isolated VBT-VBA (vinylbenzylthymine-vinylbenzyltriethylammonium chloride) copolymer chains in water at different monomeric species ratios (1:1 and 1:4). The geometric parameters of the structure that the copolymers form in equilibrium together with the basic interactions that stabilize them were determined. Atomic force microscopy (AFM) measurements of dried diluted concentrations of the two copolymers onto highly oriented pyrolytic graphite (HOPG) substrates were carried out to study their aggregation arrangement. The experiments show that both copolymers arrange in fiber-like structures. Comparing the diameters predicted by the simulation results and those obtained by AFM, it can be concluded that individual copolymers arrange in bunches of two chains, stabilized by contra-ions-copolymer interactions for the 1:1 copolymerization ratio at the ionic strength of our samples. In contrast, for the 1:4 system the individual copolymer chains do not aggregate in bunches. These results remark the relevance of the copolymerization ratio and ionic strength of the solvent in the mesoscopic structure of these materials.

5.
J Phys Chem B ; 118(14): 3912-21, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24650115

RESUMEN

Detergents are essential tools to study biological membranes, and they are frequently used to solubilize lipids and integral membrane proteins. Particularly the nondenaturing zwitterionic detergent usually named CHAPS was designed for membrane biochemistry and integrates the characteristics of the sulfobetaine-type detergents and bile salts. Despite the available experimental data little is known about the molecular structure of its micelles. In this work, molecular dynamics simulations were performed to study the aggregation in micelles of several numbers of CHAPS (≤ 18) starting from a homogeneous water dilution. The force field parameters to describe the interactions of the molecule were developed and validated. After 50 ns of simulation almost all the systems result in the formation of stable micelles. The molecular shape (gyration radii, volume, surface) and the molecular structure (RDF, salt bridges, H-bonds, SAS) of the micelles were characterized. It was found that the main interactions that lead to the stability of the micelles are the electrostatic ones among the polar groups of the tails and the OH's from the ring moiety. Unlike micelles of other compounds, CHAPS show a grainlike heterogeneity with hydrophobic micropockets. The results are in complete agreement with the available experimental information from NMR, TEM, and SAXS studies, allowing the modeling of the molecular structure of CHAPS micelles. Finally, we hope that the new force field parameters for this detergent will be a significant contribution to the knowledge of such an interesting molecule.


Asunto(s)
Ácidos Cólicos/química , Micelas , Simulación de Dinámica Molecular , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Dispersión del Ángulo Pequeño , Agua/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA