Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233346

RESUMEN

Since the formation of organic salts can improve the solubility, bioavailability, and stability of active pharmaceutical ingredients, the aim of this work was to prepare an organic salt of chlordiazepoxide with saccharin. To achieve this goal, the saccharin salt of chlordiazepoxide was obtained from a physical mixture of both components by grinding them with a small volume of solvent and by crystallizing them with complete evaporation of the solvent. The resulting salt was examined by methods such as Powder X-ray Diffraction (PXRD), Single Crystal X-ray Diffraction (SCXRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR), and Raman spectroscopy. The results of the studies proved that saccharin salt of chlordiazepoxide crystallizes in the orthorhombic Pbca space group with one chlordiazepoxide cation and one saccharin anion in the asymmetric unit. In the crystal of the title compound, the chlordiazepoxide cation and the saccharin anion interact through strong N-H···O hydrogen bonds and weak C-H···O hydrogen bonds. The disappearance of the N-H band in the FT-IR spectrum of saccharin may indicate a shift of this proton towards chlordiazepoxide, while the disappearance of the aromatic bond band in the chlordiazepoxide ring in the Raman spectrum may suggest the formation of intermolecular hydrogen bonds between chlordiazepoxide molecules. The melting point of the salts differs from that of the starting compounds. Thermal decomposition of the salt begins above 200 °C and shows at least two overlapping stages of mass loss. In summary, the results of the research showed that the crystalline salt of the saccharin and chlordiazepoxide can be obtained by various methods: grinding with the addition of acetonitrile and crystallization from acetonitrile or a mixture of methanol with methylene chloride.


Asunto(s)
Clordiazepóxido , Sacarina , Acetonitrilos , Rastreo Diferencial de Calorimetría , Metanol , Cloruro de Metileno , Polvos , Protones , Sales (Química)/química , Solubilidad , Solventes , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
2.
Pharmaceutics ; 12(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659986

RESUMEN

The low water solubility of benzodiazepines seriously affects their bioavailability and, in consequence, their biological activity. Since co-crystallization has been found to be a promising way to modify undesirable properties in active pharmaceutical ingredients, the objective of this study was to prepare co-crystals of two benzodiazepines, chlordiazepoxide and lorazepam. Using different co-crystallization procedures, slurry evaporation and liquid-assisted grinding, co-crystals of chlordiazepoxide with p-aminobenzoic acid and lorazepam with nicotinamide were prepared for the first time. Confirmation that co-crystals were obtained was achieved through a comparison of the data acquired for both co-crystals using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) and Raman spectroscopy, with comparisons acquired for the physical mixtures of both benzodiazepines and coformers. The compatibility of PXRD patterns of both benzodiazepines co-crystals with those contained in the base Powder Diffraction File (PDF-4+) suggests that new crystal structures were indeed created under the co-crystallization procedure. Single-crystal X-ray diffraction revealed that a chlordiazepoxide co-crystal with p-aminobenzoic acid and a lorazepam co-crystal with nicotinamide crystallized in the monoclinic P21/n and P21/c space group, respectively, with one molecule of benzodiazepine and one of coformer in the asymmetric unit. FTIR and Raman spectroscopy corroborated that benzodiazepine and coformer are linked by a hydrogen bond without proton exchange. Furthermore, a DSC study revealed that single endothermic DSC peaks assigned to the melting of co-crystals differ slightly depending on the co-crystallization procedures and solvent used, as well as differing from those of starting components.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 234: 118242, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32179462

RESUMEN

Co-crystals, which are defined as "solids that are crystalline materials composed of two or more molecules in the same crystal lattice" have recently been the focus of increased interest in the pharmaceutical industry since co-crystallization can improve unfavorable physicochemical properties of active pharmaceutical ingredients. Thus, the quest for new co-crystal screening methods has become an issue of importance. The aim of this work was, therefore, to show to what extent expanded methodology based on FTIR and Raman spectroscopy supported by the DSC method can be used as a reliable tool to screen co-crystallization. Because co-crystals of benzodiazepines had not yet been obtained, a set of 72 binary mixtures composed of eight 1,4-benzodiazepine derivatives and nine coformers were used as model substances. Potential co-crystals were prepared in solid-state by liquid-assisted grinding procedure. The characteristic FTIR and Raman bands which reflect hydrogen bond formation between benzodiazepine and coformer were used as proof of co-crystal creation. DSC was used as a supporting tool to reflect the phase transitions which occur during co-crystallization. As a result of the study, four potential co-crystals can be selected: lorazepam with nicotinamide, chlordiazepoxide with p-aminobenzoic and saccharin, and estazolam with fumaric acid. The detailed spectral and thermal characteristics of these systems are presented in this work. Thus, the proposed methodology of co-crystal screening based on FTIR and Raman data supported by the DSC examination of phase transitions facilitates the screening and detection of benzodiazepine co-crystal prepared by short time components ground with a slight additional volume of solvent.


Asunto(s)
Benzodiazepinas/química , Rastreo Diferencial de Calorimetría , Espectrometría Raman , Calibración , Cristalización , Niacinamida/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Molecules ; 23(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149571

RESUMEN

Co-crystals have garnered increasing interest in recent years as a beneficial approach to improving the solubility of poorly water soluble active pharmaceutical ingredients (APIs). However, their preparation is a challenge that requires a simple approach towards co-crystal detection. The objective of this work was, therefore, to verify to what extent a multivariate statistical approach such as principal component analysis (PCA) and cluster analysis (CA) can be used as a supporting tool for detecting co-crystal formation. As model samples, physical mixtures and co-crystals of indomethacin with saccharin and furosemide with p-aminobenzoic acid were prepared at API/co-former molar ratios 1:1, 2:1 and 1:2. Data acquired from DSC curves and FTIR and Raman spectroscopies were used for CA and PCA calculations. The results obtained revealed that the application of physical mixtures as reference samples allows a deeper insight into co-crystallization than is possible with the use of API and co-former or API and co-former with physical mixtures. Thus, multivariate matrix for PCA and CA calculations consisting of physical mixtures and potential co-crystals could be considered as the most profitable and reliable way to reflect changes in samples after co-crystallization. Moreover, complementary interpretation of results obtained using DSC, FTIR and Raman techniques is most beneficial.


Asunto(s)
Rastreo Diferencial de Calorimetría , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Ácido 4-Aminobenzoico/química , Furosemida/química , Indometacina/química , Sacarina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...