Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 179(2): 391-401, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30459264

RESUMEN

Nature often creates complex structures by rearranging pre-existing units. One such example is the flower head (capitulum) in daisies, where a group of flowers (florets) and phyllaries (modified bracts) are arranged to superficially mimic a single flower. The capitulum is a key taxonomical innovation that defines the daisy family (Asteraceae), the largest flowering plant group. However, patterning mechanisms underlying its structure remain elusive. Here, we show that auxin, a plant hormone, provides a developmental patterning cue for the capitulum. During capitulum development, a temporal auxin gradient occurs, regulating the successive and centripetal formation of distinct florets and phyllaries. Disruption of the endogenous auxin gradient led to homeotic conversions of florets and phyllaries in the capitulum. Furthermore, auxin regulates floral meristem identity genes, such as Matricaria inodora RAY2 and M inodora LEAFY, which determine floret and phyllary identity. This study reveals the mechanism of capitulum patterning and highlights how common developmental tools, such as hormone gradients, have independently evolved in plants and animals.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Inflorescencia/crecimiento & desarrollo , Matricaria/crecimiento & desarrollo , Flores/anatomía & histología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Inflorescencia/anatomía & histología , Inflorescencia/efectos de los fármacos , Matricaria/anatomía & histología , Matricaria/genética , Filogenia , Plantas Modificadas Genéticamente
2.
Plant Physiol ; 171(3): 2055-68, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208229

RESUMEN

All members of Asteraceae, the largest flowering family, have a unique compressed inflorescence known as a capitulum, which resembles a solitary flower. The capitulum often consists of bilateral (zygomorphic) ray florets and radial (actinomorphic) disc florets. In Antirrhinum majus, floral zygomorphy is established by the interplay between dorsal petal identity genes, CYCLOIDEA (CYC) and RADIALIS (RAD), and a ventral gene DIVARICATA (DIV). To investigate the role of CYC, RAD, and DIV in the development of ray and disc florets within a capitulum, we isolated homologs of these genes from an Asteraceae species, Senecio vulgaris (common groundsel). After initial uniform expression of RAY3 (CYC), SvRAD, and SvDIV1B in ray florets only, RAY3 and SvRAD were exclusively expressed in the ventral petals of the ray florets. Our functional analysis further showed that RAY3 promotes and SvDIV1B represses petal growth, confirming their roles in floral zygomorphy. Our results highlight that while floral symmetry genes such as RAY3 and SvDIV1B appear to have a conserved role in petal growth in both Senecio and Antirrhinum, the regulatory relationships and expression domains are divergent, allowing ventral petal elongation in Senecio versus dorsal petal elongation in Antirrhinum In S vulgaris, diversification of CYC genes has led to novel interactions; SvDIV1B inhibits RAY3 and SvRAD, and may activate RAY2 This highlights how recruitment of floral symmetry regulators into dynamic networks was crucial for creating a complex and elaborate structure such as the capitulum.


Asunto(s)
Flores/anatomía & histología , Flores/fisiología , Proteínas de Plantas/genética , Senecio/fisiología , Antirrhinum/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Senecio/anatomía & histología , Senecio/genética
3.
Plant Physiol ; 165(1): 196-206, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24664206

RESUMEN

Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively.


Asunto(s)
Kalanchoe/fisiología , Proteínas Mutantes/metabolismo , Proteínas de Plantas/metabolismo , Reproducción Asexuada , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Giberelinas/farmacología , Kalanchoe/efectos de los fármacos , Kalanchoe/genética , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Datos de Secuencia Molecular , Fenotipo , Latencia en las Plantas/efectos de los fármacos , Hojas de la Planta/embriología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Piridonas/farmacología , Reproducción Asexuada/efectos de los fármacos , Triazoles/farmacología
4.
Plant Cell ; 24(7): 3153-66, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22822208

RESUMEN

Infection of crop species by parasitic plants is a major agricultural hindrance resulting in substantial crop losses worldwide. Parasitic plants establish vascular connections with the host plant via structures termed haustoria, which allow acquisition of water and nutrients, often to the detriment of the infected host. Despite the agricultural impact of parasitic plants, the molecular and developmental processes by which host/parasitic interactions are established are not well understood. Here, we examine the development and subsequent establishment of haustorial connections by the parasite dodder (Cuscuta pentagona) on tobacco (Nicotiana tabacum) plants. Formation of haustoria in dodder is accompanied by upregulation of dodder KNOTTED-like homeobox transcription factors, including SHOOT MERISTEMLESS-like (STM). We demonstrate interspecific silencing of a STM gene in dodder driven by a vascular-specific promoter in transgenic host plants and find that this silencing disrupts dodder growth. The reduced efficacy of dodder infection on STM RNA interference transgenics results from defects in haustorial connection, development, and establishment. Identification of transgene-specific small RNAs in the parasite, coupled with reduced parasite fecundity and increased growth of the infected host, demonstrates the efficacy of interspecific small RNA-mediated silencing of parasite genes. This technology has the potential to be an effective method of biological control of plant parasite infection.


Asunto(s)
Cuscuta/fisiología , Nicotiana/parasitología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Interferencia de ARN/fisiología , ARN Interferente Pequeño/fisiología , Arabidopsis/genética , Cuscuta/citología , Cuscuta/genética , Cuscuta/crecimiento & desarrollo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Interacciones Huésped-Parásitos , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/parasitología , Brotes de la Planta/fisiología , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/parasitología , Haz Vascular de Plantas/fisiología , Plantas Modificadas Genéticamente , Transporte de ARN , ARN Interferente Pequeño/genética , Nicotiana/citología , Nicotiana/genética , Nicotiana/fisiología
5.
Cold Spring Harb Protoc ; 2009(10): pdb.emo133, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20147034

RESUMEN

The genus Kalanchoë plays an important role in the investigation of biochemical, physiological and phylogenetic aspects of Crassulacean acid metabolism (CAM) in plants, which is an important evolutionary adaptation of the photosynthetic carbon assimilation pathway to arid environments. In addition, natural compounds extracted from tissues of Kalanchoë have potential applicability in treating tumors and inflammatory and allergic diseases, and have been shown to have insecticidal properties. Kalanchoë daigremontiana (Hamet & Perrier) originated in Madagascar and reproduces asexually by spontaneously forming whole plantlets on leaves. Plantlets develop symmetrically along the leaf margins on leaf notches, closely resembling zygotic embryos in development, and once the root system is formed, they detach from the mother-leaf, fall to the ground, and grow into new plants. This phenomenon is also found in other species from this same genus; however, the formation of leaf-plantlets is variable among species. Nevertheless, all species illustrate the remarkable ability of plant somatic cells to regenerate an entire organism, which has fascinated the scientific community for many years. It was only recently that the morphogenic process involved in the origin of K. daigremontiana plantlets was determined using molecular and genetic tools: K. daigremontiana forms plantlets by co-opting both organogenesis and embryogenesis programs into leaves. The ability of K. daigremontiana species to form somatic embryos outside of a seed environment provides an attractive model system to study somatic embryogenesis in nature, particularly the molecular mechanism involved in the acquisition of competence by vegetative cells to make embryos without fertilization.


Asunto(s)
Kalanchoe/genética , Kalanchoe/fisiología , Reproducción Asexuada , Ácidos/metabolismo , Botánica/métodos , Crassulaceae/metabolismo , Flores/metabolismo , Genes de Plantas , Modelos Biológicos , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/genética , Semillas , Especificidad de la Especie
6.
Cold Spring Harb Protoc ; 2009(10): pdb.prot5302, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20147047

RESUMEN

Here we describe in detail the detection of gene expression in plant tissues of Kalanchoë daigremontiana by in situ hybridization analyses. Included are methods for making RNA transcript probes, probe-tissue hybridization, and detection of antisense RNA probes. The in situ hybridization technique is used to determine which cells or group of cells in particular tissue(s) express a gene of interest.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hibridación in Situ/métodos , Kalanchoe/metabolismo , ARN sin Sentido/genética , Botánica/métodos , Regulación de la Expresión Génica de las Plantas , Técnicas Genéticas , Modelos Genéticos
7.
Cold Spring Harb Protoc ; 2009(10): pdb.prot5301, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20147046

RESUMEN

Tissue samples from Kalanchoë daigremontiana can be fixed for scanning electron microscopy (SEM), histology, and in situ hybridization using several common steps described in this protocol. All steps should be performed in the same manner for all three methods unless otherwise noted.


Asunto(s)
Kalanchoe/metabolismo , Células Vegetales , Fijación del Tejido/métodos , Botánica/métodos , Hibridación in Situ , Microscopía Electrónica de Rastreo/métodos , Adhesión del Tejido/métodos
8.
Cold Spring Harb Protoc ; 2009(10): pdb.prot5303, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20147048

RESUMEN

Kalanchoë daigremontiana can be stably transformed using the Agrobacterium tumefaciens-mediated T-DNA transfer method, as described here. Sterilized plant tissue is cocultivated with an A. tumefaciens suspension, transformants are selected and the shoots are grown in rooting medium and then in soil. Plant phenotypes can be examined approximately 3 mo after transfer of plants to soil.


Asunto(s)
Agrobacterium tumefaciens/genética , Kalanchoe/genética , Kalanchoe/microbiología , Botánica/métodos , Técnicas de Cocultivo , Técnicas de Transferencia de Gen , Técnicas Genéticas , Fenotipo , Raíces de Plantas , Brotes de la Planta , Factores de Tiempo
9.
Cold Spring Harb Protoc ; 2009(10): pdb.prot5304, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20147049

RESUMEN

This protocol describes how to isolate genomic DNA from leaves and stems of Kalanchoë daigremontiana. The procedure can be applied to adult leaves, but it is best to use younger leaves because they have fewer secondary metabolites and polysaccharides, which can interfere with the DNA extraction. The resulting DNA can be used for polymerase chain reactions (PCRs), Southern blots, or other applications.


Asunto(s)
ADN de Plantas/aislamiento & purificación , Técnicas Genéticas , Kalanchoe/genética , Botánica/métodos , ADN de Plantas/genética , ADN de Plantas/metabolismo , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo
10.
Cold Spring Harb Protoc ; 2009(10): pdb.prot5305, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20147050

RESUMEN

This protocol describes how to isolate total RNA from several tissues of Kalanchoë daigremontiana. Total RNA can be isolated by using the TRI-reagent method, scaled up for processing 2 g of tissue, or by using the protocol described here, which gives higher concentrations of high quality RNA. The resulting RNA can be used for various applications including generation of cDNA for reverse transcriptase-PCR (RT-PCR), Northern blots, or other purposes.


Asunto(s)
Botánica/métodos , Técnicas Genéticas , Kalanchoe/genética , ARN de Planta/genética , ARN/metabolismo , ADN Complementario/metabolismo , Genes de Plantas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Proc Natl Acad Sci U S A ; 104(39): 15578-83, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17893341

RESUMEN

Plant somatic cells have the remarkable ability to regenerate an entire organism. Many species in the genus Kalanchoë, known as "mother of thousands," develop plantlets on the leaf margins. Using key regulators of organogenesis (STM) and embryogenesis (LEC1 and FUS3) processes, we analyzed asexual reproduction in Kalanchoë leaves. Suppression of STM abolished the ability to make plantlets. Here, we report that constitutive plantlet-forming species, like Kalanchoë daigremontiana, form plantlets by coopting both organogenesis and embryogenesis programs into leaves. These species have a defective LEC1 gene and produce nonviable seed, whereas species that produce plantlets only upon stress induction have an intact LEC1 gene and produce viable seed. The latter species are basal in the genus, suggesting that induced-plantlet formation and seed viability are ancestral traits. We provide evidence that asexual reproduction likely initiated as a process of organogenesis and then recruited an embryogenesis program into the leaves in response to loss of sexual reproduction within this genus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Evolución Biológica , Fragmentación del ADN , Hibridación in Situ , Kalanchoe , Datos de Secuencia Molecular , Mutación , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Interferencia de ARN , Reproducción Asexuada , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...