Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2214350120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634146

RESUMEN

Blockade of vascular endothelial growth factor (VEGF) signaling with bevacizumab, a humanized anti-VEGF monoclonal antibody (mAb), or with receptor tyrosine kinase inhibitors, has improved progression-free survival and, in some indications, overall survival across several types of cancers by interrupting tumor angiogenesis. However, the clinical benefit conferred by these therapies is variable, and tumors from treated patients eventually reinitiate growth. Previously we demonstrated, in mouse tumor models, that galectin-1 (Gal1), an endogenous glycan-binding protein, preserves angiogenesis in anti-VEGF-resistant tumors by co-opting the VEGF receptor (VEGFR)2 signaling pathway in the absence of VEGF. However, the relevance of these findings in clinical settings is uncertain. Here, we explored, in a cohort of melanoma patients from AVAST-M, a multicenter, open-label, randomized controlled phase 3 trial of adjuvant bevacizumab versus standard surveillance, the role of circulating plasma Gal1 as part of a compensatory mechanism that orchestrates endothelial cell programs in bevacizumab-treated melanoma patients. We found that increasing Gal1 levels over time in patients in the bevacizumab arm, but not in the observation arm, significantly increased their risks of recurrence and death. Remarkably, plasma Gal1 was functionally active as it was able to reprogram endothelial cell biology, promoting migration, tubulogenesis, and VEGFR2 phosphorylation. These effects were prevented by blockade of Gal1 using a newly developed fully human anti-Gal1 neutralizing mAb. Thus, using samples from a large-scale clinical trial from stage II and III melanoma patients, we validated the clinical relevance of Gal1 as a potential mechanism of resistance to bevacizumab treatment.


Asunto(s)
Melanoma , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Humanos , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Galectina 1 , Melanoma/tratamiento farmacológico , Melanoma/patología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Células Endoteliales/patología , Factores de Crecimiento Endotelial Vascular , Biología , Inhibidores de la Angiogénesis/farmacología
2.
Methods Mol Biol ; 2442: 635-653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320550

RESUMEN

Development of an aberrant vascular network is a hallmark of the multistep pathological process of tumor growth and metastasis. In response to hypoxia, several pro-angiogenic factors are synthesized to support vascularization programs required for cancer progression. Emerging data indicate the involvement of glycans and glycan-binding proteins as critical regulators of vascular circuits in health and disease. Galectins may be regulated by hypoxic conditions and control angiogenesis in different physiopathological settings. These ß-galactoside-binding proteins may promote sprouting angiogenesis by interacting with different glycosylated receptors and triggering distinct signaling pathways. Understanding the role of galectins in tumor neovascularization will contribute to the design of novel anti-angiogenic therapies aimed at complementing current anti-cancer modalities and overcoming resistance to these treatments. Here we describe selected strategies and methods used to study the role of hypoxia-regulated galectins in the regulation of blood vessel formation.


Asunto(s)
Galectinas , Hipoxia , Neoplasias , Neovascularización Patológica , Galectinas/metabolismo , Humanos , Hipoxia/fisiopatología , Neoplasias/irrigación sanguínea , Neovascularización Patológica/fisiopatología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...