Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 24(2): 667-677, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36599673

RESUMEN

Small interfering RNA (siRNA) holds promise for treating rheumatoid arthritis by inhibiting major cytokines such as tumor necrosis factor-α (TNF-α). We developed original cationic amphiphilic phosphorus dendrons to produce dendriplexes associated with TNF-α siRNA. The dendrons were made of 10 pyrrolidinium end groups and a C17 aliphatic chain. The dendriplexes demonstrated the ability to protect siRNA from nuclease degradation and to promote macrophage uptake. Moreover, they led to potent inhibition of TNF-α expression in the lipopolysaccharide-activated mouse macrophage cell line RAW264.7 in vitro model. A significant anti-inflammatory effect in the murine collagen-induced arthritis model was observed through arthritis scoring and histological observations. These results open up essential perspectives in using this original amphiphilic dendron to reduce the disease burden and improve outcomes in chronic inflammatory diseases.


Asunto(s)
Artritis Experimental , Dendrímeros , Animales , Ratones , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Factor de Necrosis Tumoral alfa/genética , Antiinflamatorios/farmacología
2.
Rheumatology (Oxford) ; 61(6): 2682-2693, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34559222

RESUMEN

OBJECTIVE: SSc is a complex disease characterized by vascular abnormalities and inflammation culminating in hypoxia and excessive fibrosis. Previously, we identified chemokine (C-X-C motif) ligand 4 (CXCL4) as a novel predictive biomarker in SSc. Although CXCL4 is well-studied, the mechanisms driving its production are unclear. The aim of this study was to elucidate the mechanisms leading to CXCL4 production. METHODS: Plasmacytoid dendritic cells (pDCs) from 97 healthy controls and 70 SSc patients were cultured in the presence of hypoxia or atmospheric oxygen level and/or stimulated with several toll-like receptor (TLR) agonists. Further, pro-inflammatory cytokine production, CXCL4, hypoxia-inducible factor (HIF) -1α and HIF-2α gene and protein expression were assessed using ELISA, Luminex, qPCR, FACS and western blot assays. RESULTS: CXCL4 release was potentiated only when pDCs were simultaneously exposed to hypoxia and TLR9 agonist (P < 0.0001). Here, we demonstrated that CXCL4 production is dependent on the overproduction of mitochondrial reactive oxygen species (mtROS) (P = 0.0079) leading to stabilization of HIF-2α (P = 0.029). In addition, we show that hypoxia is fundamental for CXCL4 production by umbilical cord CD34 derived pDCs. CONCLUSION: TLR-mediated activation of immune cells in the presence of hypoxia underpins the pathogenic production of CXCL4 in SSc. Blocking either mtROS or HIF-2α pathways may therapeutically attenuate the contribution of CXCL4 to SSc and other inflammatory diseases driven by CXCL4.


Asunto(s)
Factor Plaquetario 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esclerodermia Sistémica , Receptor Toll-Like 9 , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Dendríticas/metabolismo , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...