Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 39(1): 2377586, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39037009

RESUMEN

Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.


Asunto(s)
Antiprotozoarios , Relación Dosis-Respuesta a Droga , Leishmania infantum , Pruebas de Sensibilidad Parasitaria , Superóxido Dismutasa , Leishmania infantum/enzimología , Leishmania infantum/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología
2.
Eur J Med Chem ; 244: 114878, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36332553

RESUMEN

N-methylation of the triazole moiety present in our recently described triazole-phenyl-thiazole dimerization disruptors of Leishmania infantum trypanothione disulfide reductase (LiTryR) led to a new class of potent inhibitors that target different binding sites on this enzyme. Subtle structural changes among representative library members modified their mechanism of action, switching from models of classical competitive inhibition to time-dependent mixed noncompetitive inhibition. X-ray crystallography and molecular modeling results provided a rationale for this distinct behavior. The remarkable potency and selectivity improvements, particularly against intracellular amastigotes, of the LiTryR dimerization disruptors 4c and 4d reveal that they could be exploited as leishmanicidal agents. Of note, L. infantum promastigotes treated with 4c significantly reduced their low-molecular-weight thiol content, thus providing additional evidence that LiTryR is the main target of this novel compound.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Disulfuros , Antiprotozoarios/química , NADH NADPH Oxidorreductasas , Triazoles/farmacología , Triazoles/metabolismo
3.
Eur J Med Chem ; 243: 114675, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36075146

RESUMEN

Redox homeostasis in trypanosomatids is based on the low-molecular-weight trypanothione, an essential dithiol molecule that is synthetized by trypanothione synthetase (TryS) and maintained in its reduced state by trypanothione disulfide reductase (TryR). The fact that both enzymes are indispensable for parasite survival and absent in the mammalian hosts makes them ideal drug targets against leishmaniasis. Although many efforts have been directed to developing TryR inhibitors, much less attention has been focused on TryS. The screening of an in-house library of 144 diverse molecules using two parallel biochemical assays allowed us to detect 13 inhibitors of L. infantum TryS. Compounds 1 and 3 were characterized as competitive inhibitors with Ki values in the low micromolar range and plausible binding modes for them were identified by automated ligand docking against refined protein structures obtained through computational simulation of an entire catalytic cycle. The proposed binding site for both inhibitors overlaps the polyamine site in the enzyme and, additionally, 1 also occupies part of the ATP site. Compound 4 behaves as a mixed hyperbolic inhibitor with a Ki of 0.8 µM. The activity of 5 is clearly dependent on the concentration of the polyamine substrate, but its kinetic behavior is clearly not compatible with a competitive mode of inhibition. Analysis of the activity of the six best inhibitors against intracellular amastigotes identified 5 as the most potent leishmanicidal candidate, with an EC50 value of 0.6 µM and a selectivity index of 35.


Asunto(s)
Amida Sintasas , Antiprotozoarios , Animales , Amida Sintasas/metabolismo , NADH NADPH Oxidorreductasas , Sitios de Unión , Oxidación-Reducción , Antiprotozoarios/farmacología , Antiprotozoarios/química , Mamíferos/metabolismo
4.
Eur J Med Chem ; 227: 113915, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34695777

RESUMEN

Fifteen pyridazino-pyrrolo-quinoxalinium salts were synthesized and tested for their antiprotozoal activity against Leishmania infantum amastigotes. Eleven of them turned out to be leishmanicidal, with EC50 values in the nanomolar range, and displayed low toxicity against the human THP-1 cell line. Selectivity indices for these compounds range from 10 to more than 1000. Compounds 3b and 3f behave as potent inhibitors of the oxidoreductase activity of the essential enzyme trypanothione disulfide reductase (TryR). Interestingly, binding of 3f is not affected by high trypanothione concentrations, as revealed by the noncompetitive pattern of inhibition observed when tested in the presence of increasing concentrations of this substrate. Furthermore, when analyzed at varying NADPH concentrations, the characteristic pattern of hyperbolic uncompetitive inhibition supports the view that binding of NADPH to TryR is a prerequisite for inhibitor-protein association. Similar to other TryR uncompetitive inhibitors for NADPH, 3f is responsible for TryR-dependent reduction of cytochrome c in a reaction that is typically inhibited by superoxide dismutase.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores Enzimáticos/farmacología , Leishmania infantum/efectos de los fármacos , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Leishmania infantum/metabolismo , Estructura Molecular , NADH NADPH Oxidorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Piridazinas/química , Piridazinas/farmacología , Pirroles/química , Pirroles/farmacología , Quinoxalinas/química , Quinoxalinas/farmacología , Sales (Química)/síntesis química , Sales (Química)/química , Sales (Química)/farmacología , Relación Estructura-Actividad , Células THP-1
5.
Antimicrob Agents Chemother ; 65(10): e0059021, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34339279

RESUMEN

This work reports the synthesis and characterization by Fourier transform infrared spectroscopy (FTIR), 1H, 13C, and 79Se nuclear magnetic resonance (NMR), mass spectrometry, and elemental analysis techniques as well as the in vitro evaluation of the leishmanicidal activity of 13 new selenophosphoramidate derivatives. Among the new compounds, four of them (compounds 1f, 1g, 2f, and 2g), which exhibited the best profiles, were tested against infected macrophages and were selected for further studies related to their leishmanicidal mechanism. In this regard, trypanothione redox system alteration was determined. Compound 1g, under similar conditions, was more effective than the corresponding references. In addition, theoretical calculations showed that this compound also presents most physicochemical and pharmacokinetic properties within the ranges expected for orally available drugs. It is believed that selenophosphoramidate functionalities may represent a scaffold to be explored toward the development of new agents for leishmania treatment.


Asunto(s)
Antiprotozoarios , Leishmania , Preparaciones Farmacéuticas , Selenio , Amidas , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Ácidos Fosfóricos , Selenio/farmacología
6.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34358115

RESUMEN

Trypanothione disulfide reductase (TryR) is an essential homodimeric enzyme of trypanosomatid parasites that has been validated as a drug target to fight human infections. Using peptides and peptidomimetics, we previously obtained proof of concept that disrupting protein-protein interactions at the dimer interface of Leishmania infantum TryR (LiTryR) offered an innovative and so far unexploited opportunity for the development of novel antileishmanial agents. Now, we show that linking our previous peptide prototype TRL38 to selected hydrophobic moieties provides a novel series of small-molecule-peptide conjugates that behave as good inhibitors of both LiTryR activity and dimerization.

7.
J Med Chem ; 64(9): 6137-6160, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33945281

RESUMEN

Inhibition of Leishmania infantum trypanothione disulfide reductase (LiTryR) by disruption of its homodimeric interface has proved to be an alternative and unexploited strategy in the search for novel antileishmanial agents. Proof of concept was first obtained by peptides and peptidomimetics. Building on previously reported dimerization disruptors containing an imidazole-phenyl-thiazole scaffold, we now report a new 1,2,3-triazole-based chemotype that yields noncompetitive, slow-binding inhibitors of LiTryR. Several compounds bearing (poly)aromatic substituents dramatically improve the ability to disrupt LiTryR dimerization relative to reference imidazoles. Molecular modeling studies identified an almost unexplored hydrophobic region at the interfacial domain as the putative binding site for these compounds. A subsequent structure-based design led to a symmetrical triazole analogue that displayed even more potent inhibitory activity over LiTryR and enhanced leishmanicidal activity. Remarkably, several of these novel triazole-bearing compounds were able to kill both extracellular and intracellular parasites in cell cultures.


Asunto(s)
Diseño de Fármacos , Leishmania infantum/enzimología , NADH NADPH Oxidorreductasas/química , Multimerización de Proteína/efectos de los fármacos , Tiazoles/química , Tiazoles/farmacología , Triazoles/química , Antiprotozoarios/química , Antiprotozoarios/farmacología , Línea Celular , Humanos , Leishmania infantum/efectos de los fármacos , NADH NADPH Oxidorreductasas/metabolismo , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA