Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1400000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109055

RESUMEN

Sugarcane is a crucial crop for sugar and bioenergy production. Saccharose content and total weight are the two main key commercial traits that compose sugarcane's yield. These traits are under complex genetic control and their response patterns are influenced by the genotype-by-environment (G×E) interaction. An efficient breeding of sugarcane demands an accurate assessment of the genotype stability through multi-environment trials (METs), where genotypes are tested/evaluated across different environments. However, phenotyping all genotype-in-environment combinations is often impractical due to cost and limited availability of propagation-materials. This study introduces the sparse testing designs as a viable alternative, leveraging genomic information to predict unobserved combinations through genomic prediction models. This approach was applied to a dataset comprising 186 genotypes across six environments (6×186=1,116 phenotypes). Our study employed three predictive models, including environment, genotype, and genomic markers as main effects, as well as the G×E to predict saccharose accumulation (SA) and tons of cane per hectare (TCH). Calibration sets sizes varying between 72 (6.5%) to 186 (16.7%) of the total number of phenotypes were composed to predict the remaining 930 (83.3%). Additionally, we explored the optimal number of common genotypes across environments for G×E pattern prediction. Results demonstrate that maximum accuracy for SA ( ρ = 0.611 ) and for TCH ( ρ=0.341 ) was achieved using in training sets few (3) to no common (0) genotype across environments maximizing the number of different genotypes that were tested only once. Significantly, we show that reducing phenotypic records for model calibration has minimal impact on predictive ability, with sets of 12 non-overlapped genotypes per environment (72=12×6) being the most convenient cost-benefit combination.

3.
Plant Methods ; 20(1): 85, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844940

RESUMEN

The selection of highly productive genotypes with stable performance across environments is a major challenge of plant breeding programs due to genotype-by-environment (GE) interactions. Over the years, different metrics have been proposed that aim at characterizing the superiority and/or stability of genotype performance across environments. However, these metrics are traditionally estimated using phenotypic values only and are not well suited to an unbalanced design in which genotypes are not observed in all environments. The objective of this research was to propose and evaluate new estimators of the following GE metrics: Ecovalence, Environmental Variance, Finlay-Wilkinson regression coefficient, and Lin-Binns superiority measure. Drawing from a multi-environment genomic prediction model, we derived the best linear unbiased prediction for each GE metric. These derivations included both a squared expectation and a variance term. To assess the effectiveness of our new estimators, we conducted simulations that varied in traits and environment parameters. In our results, new estimators consistently outperformed traditional phenotype-based estimators in terms of accuracy. By incorporating a variance term into our new estimators, in addition to the squared expectation term, we were able to improve the precision of our estimates, particularly for Ecovalence in situations where heritability was low and/or sparseness was high. All methods are implemented in a new R-package: GEmetrics. These genomic-based estimators enable estimating GE metrics in unbalanced designs and predicting GE metrics for new genotypes, which should help improve the selection efficiency of high-performance and stable genotypes across environments.

4.
Hortic Res ; 11(2): uhad283, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38487297

RESUMEN

Addressing the pressing challenges in agriculture necessitates swift advancements in breeding programs, particularly for perennial crops like grapevines. Moving beyond the traditional biparental quantitative trait loci (QTL) mapping, we conducted a genome-wide association study (GWAS) encompassing 588 Vitis vinifera L. cultivars from a Chilean breeding program, spanning three seasons and testing 13 key yield-related traits. A strong candidate gene, Vitvi11g000454, located on chromosome 11 and related to plant response to biotic and abiotic stresses through jasmonic acid signaling, was associated with berry width and holds potential for enhancing berry size in grape breeding. We also mapped novel QTL associated with post-harvest traits across chromosomes 2, 4, 9, 11, 15, 18, and 19, broadening our grasp on the genetic intricacies dictating fruit post-harvest behavior, including decay, shriveling, and weight loss. Leveraging gene ontology annotations, we drew parallels between traits and scrutinized candidate genes, laying a robust groundwork for future trait-feature identification endeavors in plant breeding. We also highlighted the importance of carefully considering the choice of the response variable in GWAS analyses, as the use of best linear unbiased estimators (BLUEs) corrections in our study may have led to the suppression of some common QTL in grapevine traits. Our results underscore the imperative of pioneering non-destructive evaluation techniques for long-term conservation traits, offering grape breeders and cultivators insights to improve post-harvest table grape quality and minimize waste.

5.
Theor Appl Genet ; 136(12): 244, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957405

RESUMEN

KEY MESSAGE: Association mapping conducted in 189 Spanish bread wheat landraces revealed six key genomic regions that constitute stable QTLs for yield and include 15 candidate genes. Genetically diverse landraces provide an ideal population to conduct association analysis. In this study, association mapping was conducted in a collection of 189 Spanish bread wheat landraces whose genomic diversity had been previously assessed. These genomic data were combined with characterization for yield-related traits, including grain size and shape, and phenological traits screened across five seasons. The association analysis revealed a total of 881 significant marker trait associations, involving 434 markers across the genome, that could be grouped in 366 QTLs based on linkage disequilibrium. After accounting for days to heading, we defined 33 high density QTL genomic regions associated to at least four traits. Considering the importance of detecting stable QTLs, 6 regions associated to several grain traits and thousand kernel weight in at least three environments were selected as the most promising ones to harbour targets for breeding. To dissect the genetic cause of the observed associations, we studied the function and in silico expression of the 413 genes located inside these six regions. This identified 15 candidate genes that provide a starting point for future analysis aimed at the identification and validation of wheat yield related genes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Mapeo Cromosómico , Triticum/genética , Pan , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA