Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(11)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36358567

RESUMEN

Chronic kidney disease (CKD) prevalence is constantly increasing, and dyslipidemia in this disease is characteristic, favoring cardiovascular events. However, the mechanisms of CKD dyslipidemia are not fully understood. The use of curcumin (CUR) in CKD models such as 5/6 nephrectomy (5/6Nx) has shown multiple beneficial effects, so it has been proposed to correct dyslipidemia without side effects. This work aimed to characterize CUR's potential therapeutic effect on dyslipidemia and alterations in lipid metabolism and mitochondrial ß-oxidation in the liver and kidney in 5/6Nx. Male Wistar rats were subjected to 5/6Nx and progressed by 4 weeks; meanwhile, CUR (120 mg/kg) was administered for weeks 5 to 8. Our results showed that CUR reversed the increase in liver and kidney damage and hypertriglyceridemia induced by 5/6Nx. CUR also reversed mitochondrial membrane depolarization and ß-oxidation disorders in the kidney and the increased lipid uptake and the high levels of proteins involved in fatty acid synthesis in the liver and kidney. CUR also decreased lipogenesis and increased mitochondrial biogenesis markers in the liver. Therefore, we concluded that the therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia is associated with the restoration of renal mitochondrial ß-oxidation and the reduction in lipid synthesis and uptake in the kidneys and liver.

2.
Antioxidants (Basel) ; 11(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290577

RESUMEN

Unilateral ureteral obstruction (UUO) is an animal rodent model that allows the study of obstructive nephropathy in an accelerated manner. During UUO, tubular damage is induced, and alterations such as oxidative stress, inflammation, lipid metabolism, and mitochondrial impairment favor fibrosis development, leading to chronic kidney disease progression. Sulforaphane (SFN), an isothiocyanate derived from green cruciferous vegetables, might improve mitochondrial functions and lipid metabolism; however, its role in UUO has been poorly explored. Therefore, we aimed to determine the protective effect of SFN related to mitochondria and lipid metabolism in UUO. Our results showed that in UUO SFN decreased renal damage, attributed to increased mitochondrial biogenesis. We showed that SFN augmented peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and nuclear respiratory factor 1 (NRF1). The increase in biogenesis augmented the mitochondrial mass marker voltage-dependent anion channel (VDAC) and improved mitochondrial structure, as well as complex III (CIII), aconitase 2 (ACO2) and citrate synthase activities in UUO. In addition, lipid metabolism was improved, observed by the downregulation of cluster of differentiation 36 (CD36), sterol regulatory-element binding protein 1 (SREBP1), fatty acid synthase (FASN), and diacylglycerol O-acyltransferase 1 (DGAT1), which reduces triglyceride (TG) accumulation. Finally, restoring the mitochondrial structure reduced excessive fission by decreasing the fission protein dynamin-related protein-1 (DRP1). Autophagy flux was further restored by reducing beclin and sequestosome (p62) and increasing B-cell lymphoma 2 (Bcl2) and the ratio of microtubule-associated proteins 1A/1B light chain 3 II and I (LC3II/LC3I). These results reveal that SFN confers protection against UUO-induced kidney injury by targeting mitochondrial biogenesis, which also improves lipid metabolism.

3.
Int J Mol Sci ; 19(10)2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30314265

RESUMEN

Diabetic nephropathy (DN) is presently the primary cause of chronic kidney disease and end-stage renal disease (ESRD). It has been suggested that inflammation and oxidative stress, in addition to or in concert with the metabolic changes, plays an important role in the maintenance and progression of the disease. Therefore, attenuating or blocking these mechanisms may be a therapeutic target to delay the progression of the disease. Diallyl thiosulfinate (allicin), a compound derived from garlic, inhibits free radical formation, increases glutathione synthesis and decreases the levels of proinflammatory molecules in vitro. This research aimed to assess the effect of allicin on oxidative stress and inflammation-induced diabetes. Animals were divided into control and diabetes (streptozotocin 50 mg/kg i.p.), and maintained for 30 days. After 30 days, the group of diabetic animals was subdivided into diabetes and allicin-treated diabetes (16 mg/kg/day oral gavage). The three experimental groups were maintained for another month. We analyzed the status of renal function, oxidative stress and proinflammatory cytokines. The untreated diabetic group showed hyperglycemia and increased diuresis, creatinine clearance, proteinuria, glycosuria and urinary excretion of N-acetyl-ß-d-glucosaminidase (NAG), as well as increased oxidative stress and the expression of interleukin 1ß (IL-1ß), IL-6, nuclear factor kappa beta (NFκß) and transforming growth factor-ß1 (TGF-ß1) in plasma and kidney. In contrast, the inhibitor of NFκß (Iκß) is decreased in the cortex. It has been demonstrated that the allicin treatment decreases hyperglycemia, polyuria, and NAG excretion. The oxidative stress and proinflammatory cytokines were also reduced by the allicin treatment. In conclusion, allicin delays the progression of diabetic nephropathy through antioxidant and anti-inflammatory mechanisms.


Asunto(s)
Nefropatías Diabéticas/inmunología , Nefropatías Diabéticas/metabolismo , Suplementos Dietéticos , Ajo/química , Inmunomodulación/efectos de los fármacos , Extractos Vegetales/farmacología , Ácidos Sulfínicos/farmacología , Animales , Antioxidantes/farmacología , Biomarcadores , Glucemia , Creatinina/sangre , Citocinas/sangre , Citocinas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disulfuros , Tasa de Filtración Glomerular , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Pruebas de Función Renal , Peroxidación de Lípido/efectos de los fármacos , Masculino , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Ratas , Insuficiencia Renal Crónica/metabolismo
4.
Int J Mol Sci ; 18(9)2017 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-28926934

RESUMEN

Recent studies suggest that allicin may play a role in chronic kidney disease (CKD), reducing hypertension and oxidative stress and improving renal dysfunction. In the present study, CKD was induced by 5/6 nephrectomy and the animals were divided into four treatment groups as follows: control (C), CKD, CKD+allicin (40 mg/kg pathway oral) (CKDA), and CKD+Losartan (20 mg/kg) (CKDL). After CKD induction, the rats developed hypertension from week 3 to the end of the study. This was associated with increased creatinine and blood urea nitrogen (BUN) levels in serum, increased albuminuria, increased urinary excretion of N-acetyl-ß-d-glucosaminidase (NAG), increased nephrin expression, and incrased histological alterations in the cortex. The levels of angiotensin receptors and endothelial nitric oxide synthase (eNOS) were decreased in the renal cortex from the CKD group. Otherwise, lipid and protein oxidation were higher in the CKD group than in the control group. A disturbance was observed in the expression levels of the nuclear factor erythroid 2-related factor 2/Kelch ECH associating protein 1 system (Nrf2/keap1) and the antioxidant enzymes catalase, superoxide dismutase, and heme oxygenase-1. Allicin or losartan treatments relieved renal dysfunction, hypertension, and oxidative stress. In addition, both treatments showed the same efficacy on the expression of angiotensin receptors, the nephrin, Nrf2/keap1 pathway, and eNOS. Further in silico analyses suggest that allicin and losartan could have a common mechanism involving interaction with AT1 receptors. Allicin showed antihypertensive, antioxidant, and nephroprotective effects. The beneficial effects showed by allicin are similar, or even better, than those of losartan. In fact, the effect of allicin on blood pressure and renal function is comparable to reductions seen with losartan, a prescription drug commonly used as a first-line therapy.


Asunto(s)
Antihipertensivos/uso terapéutico , Antioxidantes/uso terapéutico , Losartán/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Ácidos Sulfínicos/uso terapéutico , Acetilglucosaminidasa/orina , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/efectos adversos , Antioxidantes/administración & dosificación , Antioxidantes/efectos adversos , Creatinina/sangre , Disulfuros , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Losartán/administración & dosificación , Losartán/efectos adversos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Ácidos Sulfínicos/administración & dosificación , Ácidos Sulfínicos/efectos adversos , Urea/sangre
5.
Oxid Med Cell Longev ; 2016: 4693801, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26955430

RESUMEN

This study addressed the relationship of proinflammatory cytokines and Nrf2-Keap1 system in diabetic nephropathy. The experimental groups were control, diabetic, and diabetic treated with mycophenolate mofetil (MMF). The renal function, proinflammatory and profibrotic cytokines, oxidative stress, morphology, and nephrin expression were assessed. Diabetic group showed impaired renal function in association with oxidative stress and decreased Nrf2 nuclear translocation. These results were associated with increased mesangial matrix index, interstitial fibrosis, and increased nephrin expression in cortex and urine excretion. Additionally, interleukin-1ß, IL-6, and transforming growth factor-ß1 were increased in plasma and kidney. MMF treatment conserved renal function, prevented renal structural alterations, and partially prevented the proinflammatory and profibrotic cytokines overexpression. Despite that MMF treatment induced nephrin overexpression in renal tissue, preventing its urinary loss. MMF salutary effects were associated with a partial prevention of oxidative stress, increased Nrf2 nuclear translocation, and conservation of antioxidant enzymes in renal tissue. In conclusion, our results confirm that inflammation is a key factor in the progression of diabetic nephropathy and suggest that treatment with MMF protects the kidney by an antioxidant mechanism, possibly regulated at least in part by the Nrf2/Keap1 system, in addition to its well-known anti-inflammatory effects.


Asunto(s)
Antiinflamatorios/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ácido Micofenólico/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Antiinflamatorios/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Mediadores de Inflamación/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ácido Micofenólico/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
6.
Oxid Med Cell Longev ; 2014: 961326, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25243053

RESUMEN

UNLABELLED: Recent studies suggest that tubular damage precedes glomerular damage in the progression of diabetic nephropathy. Therefore, we evaluated oxidative stress and urinary excretion of tubular proteins as markers of tubular dysfunction. METHODS: Diabetes was induced in rats by streptozotocin administration (50 mg/kg). Oxidative stress was assessed by measuring the activity of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD); additionally, expression levels of 3-nitrotyrosine (3-NT), 4-hydroxynonenal (4-HNE), and oxidized protein (OP) were quantified. Whole glomerular filtration rate (GFR) was measured. Urinary excretion of neutrophil gelatinase-associated lipocalin (uNGAL), osteopontin (uOPN), and N-acetyl-ß-D-glucosaminidase (uNAG) was also determined. RESULTS: Diabetic rats showed an increase in uNGAL excretion 7 days following induction of diabetes. Diuresis, proteinuria, albuminuria, creatinine clearance, and GFR were significantly increased by 30 days after induction. Furthermore, there was an increase in both CAT and SOD activity, in addition to 3-NT, 4-HNE, and OP expression levels. However, GPx activity was lower. Serum levels of NGAL and OPN, as well as excretion levels of uNGAL, uOPN, and uNAG, were increased in diabetics. Tubular damage was observed by 7 days after diabetes induction and was further aggravated by 30 days after induction. CONCLUSION: The tubular dysfunction evidenced by urinary excretion of NGAL precedes oxidative stress during diabetes.


Asunto(s)
Proteínas de Fase Aguda/orina , Diabetes Mellitus Experimental/orina , Nefropatías Diabéticas/orina , Lipocalinas/orina , Proteínas Proto-Oncogénicas/orina , Animales , Biomarcadores/orina , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/patología , Lipocalina 2 , Masculino , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA