Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 356: 332-347, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30195021

RESUMEN

Social interaction involves neural activity in prefrontal cortex, septum, hippocampus, amygdala and hypothalamus. Notably, these areas all receive projections from the nucleus incertus (NI) in the pontine tegmentum. Therefore, we investigated the effect of excitotoxic lesions of NI neurons in adult male, Wistar rats on performance in a social discrimination test, and associated changes in immediate-early gene protein levels. NI was lesioned with quinolinic acid, and after recovery, rats underwent two trials in the 3-chamber test. In the first trial, NI-lesioned and sham-lesioned rats spent longer exploring a conspecific than an inanimate object. By contrast, in the second trial, NI-lesioned rats visited the familiar and novel conspecific chambers equally, whereas sham-lesioned rats spent longer engaging with the novel rat. Quantification of Fos- and Egr-1-immunoreactivity (IR) levels in brain areas implicated in social behaviour, revealed that social encounter and NI lesion produced complex, differential changes. For example, Egr-1-IR was broadly decreased in several amygdala nuclei in NI-lesioned rats relative to sham, but Fos-IR levels were unaltered. In hippocampus, NI-lesioned rats displayed decreased Fos-IR in CA2 and CA3, while Egr-1-IR was increased in the polymorphic dentate gyrus, CA1, CA2 and subiculum of NI-lesioned rats, relative to sham. Social encounter-related Egr-1-IR was also decreased in septum and anterior and lateral hypothalamus of NI-lesioned rats. Overall, these data suggest NI networks can modulate the activity of sensory, emotional and executive brain areas involved in social recognition, with a likely involvement of neuronal Egr-1 activation in amygdala, septum and hypothalamus, and Erg-1 inhibition in hippocampus.


Asunto(s)
Conducta Animal/fisiología , Genes Inmediatos-Precoces/genética , Hipocampo/metabolismo , Núcleos del Rafe/metabolismo , Conducta Social , Animales , Hipotálamo/metabolismo , Masculino , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Ratas Wistar
2.
Invest Ophthalmol Vis Sci ; 42(9): 2074-84, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11481275

RESUMEN

PURPOSE: To investigate in adult rats the effects of two alpha(2)-selective adrenergic agonists (alpha(2)-SAs; AGN 191103 and AGN 190342) on retinal ganglion cell (RGC) survival after transient retinal ischemia. METHODS: RGCs were labeled with a Fluorogold (FG) tracer applied to both superior colliculi. Seven days later, the left ophthalmic vessels were ligated for 60 or 90 minutes. In one group, a single dose of saline or one alpha(2)-SA was administered intraperitoneally (IP) or topically 1 hour before ischemia. In another group, a single dose of AGN 190342 was administered IP, 1, 2, 4, 24, or 72 hours after ischemia. Rats were processed 7, 14, or 21 days later. Densities of surviving RGCs were estimated by counting FG-labeled cells in 12 standard retinal areas. RESULTS: Seven days after 60 or 90 minutes of retinal ischemia, death had occurred in 36% or 47%, respectively, of the RGC population, and by 21 days the loss of RGCs amounted to 42% or 62%, respectively. Systemic pretreatment with an alpha(2)-SA resulted in enhanced survival of ischemic-injured RGCs. Topical pretreatment with an alpha(2)-SA prevented up to 100% of the ischemia-induced RGC loss. Pretreatment with an alpha(2)-SA abolished the secondary slow RGC loss that occurred between days 7 and 21 after ischemia. When administered shortly after ischemia (up to 2 hours) AGN 190342 rescued substantial proportions of RGCs destined to die and diminished slow RGC death. CONCLUSIONS: Pretreatment and early posttreatment with an alpha(2)-SA induces marked long-lasting neuroprotective in vivo protection against ischemia-induced cell death in RGCs.


Asunto(s)
Agonistas alfa-Adrenérgicos/farmacología , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/prevención & control , Enfermedades de la Retina/prevención & control , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Tartrato de Brimonidina , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/patología , Enfermedades de la Retina/patología , Células Ganglionares de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...