Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 920: 171004, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38369159

RESUMEN

This study explores microalgae-based bioremediation for treating black gunpowder production effluents, an understudied yet environmentally significant stream. Two native microalgae, Chlorella sp. MC18 (CH) and Scenedesmus sp. MJ23-R (SC), were assessed for growth kinetics and nutrient removal capabilities in culture media containing different proportions of untreated raw wastewater. Results show both species thrived in 100 % raw wastewater, displaying robust growth and substantial biomass production in parallelepiped-shaped photobioreactors. SC showed superior performance, with higher maximum specific growth rate (0.549 d-1), biomass yield (454.57 mg L-1) and biomass productivity (64.94 mg L-1 d-1) compared to CH (0.524 d-1, 380.60 mg L-1, 54.37 mg L-1 d-1, respectively). The use of 100 % raw wastewater as a culture medium eliminated the need for additional freshwater input, thus reducing the water footprint. The bioremediation process also resulted in a high removal efficiency in turbidity (>95 % CH, >76 % SC), total suspended solids (>93 % CH, >74 % SC), biochemical oxygen demand (BOD5) (>62 % CH, >93 % SC) and chemical oxygen demand (COD) (>63 % CH, >87 % SC), bringing the effluent into compliance with environmental regulations. Although nitrogen (>45 % CH, >57 % SC) and sulphate (>43 % CH, >35 % SC) removal efficiencies was high, potassium bioremediation was limited (<6 %). The proximate chemical composition of the microalgal biomass revealed different allocations to carbohydrates, lipids and proteins. The results suggest promising applications for biofuel production and aquaculture. This research highlights the potential of microalgae-based bioremediation for sustainable wastewater management in the explosives industry, contributing to the UN Sustainable Development Goals and promoting green industrial practices.


Asunto(s)
Chlorella , Microalgas , Scenedesmus , Aguas Residuales , Biodegradación Ambiental , Microalgas/metabolismo , Biomasa , Nitrógeno/metabolismo
2.
Biofouling ; 39(5): 483-501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37394974

RESUMEN

In order to build an efficient closed-photobioreactor (PBR) in which biofouling formation is avoided, a non-toxic coating with high transparency is required, which can be applied to the interior surface of the PBR walls. Nowadays, amphiphilic copolymers are being used to inhibit microorganism adhesion, so poly(dimethylsiloxane)-based coatings mixed with poly(ethylene glycol)-based copolymers could be a good option. The 7 poly(dimethylsiloxane)-based coatings tested in this work contained 4% w/w of poly(ethylene glycol)-based copolymers. All were a good alternative to glass because they presented lower cell adhesion. However, the DBE-311 copolymer proved the best option due to its very low cell adhesion and high transmittance. Furthermore, XDLVO theory indicates that these coatings should have no cell adhesion at time 0 since they create a very high-energy barrier that microalgae cells cannot overcome. Nevertheless, this theory also shows that their surface properties change over time, making cell adhesion possible on all coatings after 8 months of immersion. The theory is useful in explaining the interaction forces between the surface and microalgae cells at any moment in time, but it should be complemented with models to predict the conditioning film formation and the contribution of the PBR's fluid dynamics over time.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Fotobiorreactores , Biopelículas , Polietilenglicoles/farmacología , Polímeros/farmacología , Propiedades de Superficie
3.
Toxins (Basel) ; 15(5)2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37235383

RESUMEN

The red tide-forming microalga Heterosigma akashiwo has been associated with massive events of fish deaths, both wild and cultured. Culture conditions are responsible for the synthesis or accumulation of some metabolites with different interesting bioactivities. H. akashiwo LC269919 strain was grown in a 10 L bubble column photobioreactor artificially illuminated with multi-coloured LED lights. Growth and production of exopolysaccharides, polyunsaturated fatty acids (PUFAs), and carotenoids were evaluated under different culture modes (batch, fed-batch, semicontinuous, and continuous) at two irradiance levels (300 and 700 µE·s-1·m-2). Continuous mode at the dilution rate of 0.2·day-1 and 700 µE·s-1·m-2 provided the highest production of biomass, PUFAs (132.6 and 2.3 mg·L-1·day-1), and maximum fucoxanthin productivity (0.16 mg·L-1·day-1). The fed-batch mode accumulated exopolysaccharides in a concentration (1.02 g·L-1) 10-fold over the batch mode. An extraction process based on a sequential gradient partition with water and four water-immiscible organic solvents allowed the isolation of bioactive fucoxanthin from methanolic extracts of H. akashiwo. Metabolites present in H. akashiwo, fucoxanthin and polar lipids (i.e., eicosapentaenoic acid (EPA)), or probably such as phytosterol (ß-Sitosterol) from other microalgae, were responsible for the antitumor activity obtained.


Asunto(s)
Microalgas , Estramenopilos , Animales , Microalgas/metabolismo , Xantófilas , Ácidos Grasos Insaturados , Agua/metabolismo
4.
Environ Sci Pollut Res Int ; 30(10): 27113-27124, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36378374

RESUMEN

Dinoflagellates of the genus Karlodinium are ichthyotoxic species that produce toxins including karlotoxins and karmitoxins. Karlotoxins show hemolytic and cytotoxic activities and have been associated with fish mortality. This study evaluated the effect of toxins released into the environment of Karlodinium veneficum strain K10 (Ebro Delta, NW Mediterranean) on the early stages of Danio rerio (zebrafish). Extracts of the supernatant of K10 contained the mono-sulfated KmTx-10, KmTx-11, KmTx-12, KmTx-13, and a di-sulfated form of KmTx-10. Total egg mortality was observed for karlotoxin concentration higher than 2.69 µg L-1. For 1.35 µg L-1, 87% of development anomalies were evidenced (all concentrations were expressed as KmTx-2 equivalent). Larvae of 8 days postfertilization exposed to 1.35 µg L-1 presented epithelial damage with 80% of cells in the early apoptotic stage. Our results indicate that supernatants with low concentration of KmTxs produce both lethal and sublethal effects in early fish stages. Moreover, apoptosis was induced at concentrations as low as 0.01 µg L-1. This is of great relevance since detrimental long-term effects due to exposure to low concentrations of these substances could affect wild and cultured fish.


Asunto(s)
Dinoflagelados , Animales , Pez Cebra , Toxinas Marinas/toxicidad , Apoptosis
5.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430401

RESUMEN

An improved method that allows the robust characterization of surfaces is necessary to accurately predict the biofouling formation on construction materials of photobioreactors (PBR). Exopolymeric substances (EPS), such as proteins and polysaccharides, have been demonstrated to present a similar behavior to cells in terms of surface adhesion. In this work, these EPS were used to optimize parameters, such as EPS concentration or adsorption time, to evaluate accurately the adsorption capacity of surfaces and, with it, predict the biofouling formation in contact with microalgae cultures. Once the method was optimized, the characterization of seven commercial polymeric surfaces was submitted to different abrasive particles sizes, which modified the roughness of the samples, as well as protein and polysaccharide lawns, which were prepared and carried out in order to evaluate the characteristics of these substances. The characterization consisted of the determination of surface free energy, water adhesion tension, and critical tension determined from the measurement of the contact angle, roughness, surface zeta potential, and the EPS adhesion capacity of each material. This will be useful to understand the behavior of the surface in the function of its characteristics and the interaction with the solutions of EPS, concluding that the hydrophobic and smooth surfaces present good anti-biofouling characteristics.


Asunto(s)
Incrustaciones Biológicas , Microalgas , Fotobiorreactores , Adsorción , Matriz Extracelular de Sustancias Poliméricas , Incrustaciones Biológicas/prevención & control
6.
Toxins (Basel) ; 14(9)2022 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-36136531

RESUMEN

The two main methods for partitioning crude methanolic extract from Amphidinium carterae biomass were compared. The objective was to obtain three enriched fractions containing amphidinols (APDs), carotenoids, and fatty acids. Since the most valuable bioproducts are APDs, their recovery was the principal goal. The first method consisted of a solid-phase extraction (SPE) in reverse phase that, for the first time, was optimized to fractionate organic methanolic extracts from Amphidinium carterae biomass using reverse-phase C18 as the adsorbent. The second method consisted of a two-step liquid-liquid extraction coupled with SPE and, alternatively, with solvent partitioning. The SPE method allowed the recovery of the biologically-active fraction (containing the APDs) by eluting with methanol (MeOH): water (H2O) (80:20 v/v). Alternatively, an APD purification strategy using solvent partitioning proved to be a better approach for providing APDs in a clear-cut way. When using n-butanol, APDs were obtained at a 70% concentration (w/w), whereas for the SPE method, the most concentrated fraction was only 18% (w/w). For the other fractions (carotenoids and fatty acids), a two-step liquid-liquid extraction (LLE) method coupled with the solvent partitioning method presented the best results.


Asunto(s)
Dinoflagelados , Metanol , 1-Butanol , Biomasa , Carotenoides , Ácidos Grasos , Extracción Líquido-Líquido , Extractos Vegetales , Extracción en Fase Sólida , Solventes , Agua
7.
Toxins (Basel) ; 14(9)2022 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-36136532

RESUMEN

The marine dinoflagellate microalga Amphidinium carterae is a source of amphidinols, a fascinating group of polyketide metabolites potentially useful in drug design. However, Amphidinium carterae grows slowly and produces these toxins in tiny amounts, representing a hurdle for large-scale production. Understanding dinoflagellate growth kinetics under different photobioreactor conditions is imperative for promoting the successful implementation of a full-scale integrated bioproduct production system. This study evaluates the feasibility of growing Amphidinium carterae under different ranges of nitrogen concentration (NO3- = 882-2646 µM), phosphorus concentration (PO33- = 181-529 µM), and light intensity (Y0 = 286-573 µE m-2 s-1) to produce amphidinols. A mathematical colimitation kinetic model based on the "cell quota" concept is developed to predict both algal growth and nutrient drawdown, assuming that all three variables (nitrogen, phosphorous and light) can simultaneously colimit microalgal growth. The model was applied to the semicontinuous culture of the marine microalgae Amphidinium carterae in an indoor LED-lit raceway photobioreactor. The results show that both growth and amphidinol production strongly depend on nutrient concentrations and light intensity. Nonetheless, it was possible to increase Amphidinium carterae growth while simultaneously promoting the overproduction of amphidinols. The proposed model adequately describes Amphidinium carterae growth, nitrate and phosphate concentrations, and intracellular nitrogen and phosphorus storage, and has therefore the potential to be extended to other systems used in dinoflagellate cultivation and the production of bioproducts obtained therein.


Asunto(s)
Dinoflagelados , Microalgas , Policétidos , Dinoflagelados/metabolismo , Microalgas/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Policétidos/metabolismo
8.
Biofouling ; 38(5): 507-520, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35729852

RESUMEN

This work analyses the adhesion of flagellated microalgae to seven surfaces that have different water adhesion tension characteristics. Chlamydomonas reinhardtii and Isochrysis galbana, were cultivated in batch and fed-batch mode at four nitrogen/phosphorus (N/P) ratios (from 1.29 to 70) and subjected to four irradiance levels (50, 100, 200 and 400 µE·s-1·m-2) at 23 °C. Cell adhesion was greater in C. reinhardtii and a higher biomass concentration was obtained for this strain, reaching 2 g·L-1 compared to 1 g·L-1 for I. galbana. The adhesion of cells and exopolymeric substances was measured upon the batch and the first fed-batch reaching the stationary growth phase, observing a direct correlation between them and inversely to biomass generation in the cultures. The protein adhesion data for the different materials are comparable to those for cell adhesion coinciding with minimums of Baier's theory and Vogler. It is observed displacements in the curves as a function of the irradiance level.


Asunto(s)
Incrustaciones Biológicas , Microalgas , Biopelículas , Biomasa , Nitrógeno , Fotobiorreactores
9.
Biotechnol Adv ; 55: 107884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34896169

RESUMEN

Production of phytoplankton (microalgae and cyanobacteria) in commercial raceway ponds and other systems is adversely impacted by phytoplankton pathogens, including bacteria, fungi and viruses. In addition, cultures are susceptible to productivity loss, or crash, through grazing by contaminating zooplankton such as protozoa, rotifers and copepods. Productivity loss and product contamination are also caused by otherwise innocuous invading phytoplankton that consume resources in competition with the species being cultured. This review is focused on phytoplankton competitors, pathogens and grazers of significance in commercial culture of microalgae and cyanobacteria. Detection and identification of these biological contaminants are discussed. Operational protocols for minimizing contamination, and methods of managing it, are discussed.


Asunto(s)
Cianobacterias , Microalgas , Animales , Fitoplancton , Estanques , Zooplancton
10.
Mar Drugs ; 19(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34436271

RESUMEN

The demand for valuable products from dinoflagellate biotechnology has increased remarkably in recent years due to their many prospective applications. However, there remain many challenges that need to be addressed in order to make dinoflagellate bioactives a commercial reality. In this article, we describe the technical feasibility of producing and recovering amphidinol analogues (AMs) excreted into a culture broth of Amphidinium carterae ACRN03, successfully cultured in an LED-illuminated pilot-scale (80 L) bubble column photobioreactor operated in fed-batch mode with a pulse feeding strategy. We report on the isolation of new structurally related AMs, amphidinol 24 (1, AM24), amphidinol 25 (2, AM25) and amphidinol 26 (3, AM26), from a singular fraction resulting from the downstream processing. Their planar structures were elucidated by extensive NMR and HRMS analysis, whereas the relative configuration of the C-32→C-47 bis-tetrahydropyran core was confirmed to be antipodal in accord with the recently revised configuration of AM3. The hemolytic activities of the new metabolites and other related derivatives were evaluated, and structure-activity conclusions were established. Their isolation was based on a straightforward and high-performance bioprocess that could be suitable for the commercial development of AMs or other high-value compounds from shear sensitive dinoflagellates.


Asunto(s)
Organismos Acuáticos/química , Dinoflagelados/química , Animales , Fotobiorreactores , Proyectos Piloto , Relación Estructura-Actividad
11.
Mar Drugs ; 18(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003497

RESUMEN

Amphidinols are polyketides produced by dinoflagellates suspected of causing fish kills. Here, we demonstrate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the identification and quantification of amphidinols (AM). Novel AM were detected by neutral loss (NL) scan and then quantified together with known AM by selection reaction monitoring (SRM). With the new method, AM were detected in four of eight analyzed strains with a maximum of 3680 fg toxin content per cell. In total, sixteen novel AM were detected by NL scan and characterized via their fragmentation patterns. Of these, two substances are glycosylated forms. This is the first detection of glycosylated AM.


Asunto(s)
Cromatografía Liquida/métodos , Dinoflagelados/metabolismo , Policétidos/análisis , Espectrometría de Masas en Tándem/métodos , Policétidos/aislamiento & purificación
12.
J Agric Food Chem ; 67(34): 9667-9682, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31415166

RESUMEN

This study assessed the feasibility of an NMR metabolomics approach coupled to multivariate data analysis to monitor the naturally present or stresses-elicited metabolites from a long-term (>170 days) culture of the dinoflagellate marine microalgae Amphidinium carterae grown in a fiberglass paddlewheel-driven raceway photobioreactor. Metabolic contents, in particular, in two members of the amphidinol family, amphidinol A and its 7-sulfate derivative amphidinol B (referred as APDs), and other compounds of interest (fatty acids, carotenoids, oxylipins, etc.) were evaluated by altering concentration levels of the f/2 medium nutrients and daily mean irradiance. Operating with a 24 h sinusoidal light cycle allowed a 3-fold increase in APD production, which was also detected by an increase in hemolytic activity of the methanolic extract of A. carterae biomass. The presence of APDs was consistent with the antitumoral activity measured in the methanolic extracts of the biomass. Increased daily irradiance was accompanied by a general decrease in pigments and an increase in SFAs (saturated fatty acids), MUFAs (monounsaturated fatty acids), and DHA (docosahexaenoic acid), while increased nutrient availability lead to an increase in sugar, amino acid, and PUFA ω-3 contents and pigments and a decrease in SFAs and MUFAs. NMR-based metabolomics is shown to be a fast and suitable method to accompany the production of APD and bioactive compounds without the need of tedious isolation methods and bioassays. The two APD compounds were chemically identified by spectroscopic NMR and spectrometric ESI-IT MS (electrospray ionization ion trap mass spectrometry) and ESI-TOF MS (ESI time-of-flight mass spectrometry) methods.


Asunto(s)
Dinoflagelados/metabolismo , Macrólidos/química , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Microalgas/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Dinoflagelados/química , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Macrólidos/metabolismo , Microalgas/química , Análisis Multivariante
13.
Biotechnol Bioeng ; 116(9): 2212-2222, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31062873

RESUMEN

The biofouling formation of the marine microalga Nannochloropsis gaditana on nontoxic surfaces was quantified on rigid materials, both coated (with fouling release coatings and nanoparticle coatings) and noncoated, to cover a wide range of surface properties from strongly hydrophobic to markedly hydrophilic under conditions similar to those prevailing in outdoor massive cultures of marine microalgae. The effect of seawater on surfaces that presented the best antibiofouling properties was also evaluated. The adhesion intensity on the different surfaces was compared with the predictions of the biocompatibility theories developed by Baier and Vogler using water adhesion tension (τ0 ) as the quantitative parameter of surface wettability. For the most hydrophobic surfaces, τ0 ≤ 0, the microalgae adhesion density increased linearly with τ0 , following the Baier's theory trend. However, for the rest of the surfaces, τ0 ≥ 0, a tendency toward minimum adhesion was observed for amphiphilic surfaces with a τ0 = 36 mJ/m2 , a value close to that which minimizes cell adhesion according to Vogler's theory. The understanding and combination of the two biocompatibility theories could help to design universal antibiofouling surfaces that minimize the van der Waals forces and prevent foulant adsorption by using a thin layer of hydration.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Microalgas/crecimiento & desarrollo , Modelos Biológicos , Fotobiorreactores , Propiedades de Superficie
14.
Bioresour Technol ; 275: 1-9, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30572257

RESUMEN

The shear-sensitive marine algal dinoflagellate Karlodinium veneficum was grown in a cylindrical bubble column photobioreactor with an internal diameter of 0.044 m. Initial liquid height varied from 0.5 to 1.75 m, superficial gas velocities from 0.0014 to 0.0057 ms-1, and nozzle diameter from 1 to 2.5 mm. Computational fluid dynamics was used to characterize the flow hydrodynamics and energy dissipation rates. Experimental gas holdup and volumetric mass transfer coefficient strongly depended on the liquid height and correlated well with the Froude number. Energy dissipation near the head space (EDtop) was one order of magnitude higher than the average energy dissipation in the whole reactor (EDwhole), and the value in the sparger zone (EDspar) was one order of magnitude higher than EDtop. Cultures of K. veneficum were limited by CO2 transfer at low EDwhole and severely stressed above a critical value of EDwhole.


Asunto(s)
Dinoflagelados/metabolismo , Microalgas/metabolismo , Fotobiorreactores , Hidrodinámica
15.
Cytotechnology ; 70(2): 555-565, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28779292

RESUMEN

Since the infection strategy in the baculovirus-insect cell system mostly affects production of the vector itself or the target product, and given that individual infection parameters interact with each other, the optimal combination must be established for each such specific system. In this work an artificial neural network was used to model infection strategy, including the cell concentration at infection, the multiplicity of infection, the medium recycle, and agitation intensity, and to evaluate the relative importance of each factor in the baculovirus production obtained. The results demonstrate that this model can be used to select an optimal infection strategy. For the baculovirus-insect cell system used in this study, this includes low multiplicity of infection and agitation intensity, along with high cell concentration at infection and medium recycle. Our model is superior to regression methods and predicts baculovirus production more precisely, thus meaning that it could be useful for the development of feasible processes, thereby improving process performance and economy.

16.
Mar Drugs ; 15(12)2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29258236

RESUMEN

A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the detection and quantitation of karlotoxins in the selected reaction monitoring (SRM) mode. This novel method was based upon the analysis of purified karlotoxins (KcTx-1, KmTx-2, 44-oxo-KmTx-2, KmTx-5), one amphidinol (AM-18), and unpurified extracts of bulk cultures of the marine dinoflagellate Karlodinium veneficum strain CCMP2936 from Delaware (Eastern USA), which produces KmTx-1 and KmTx-3. The limit of detection of the SRM method for KmTx-2 was determined as 2.5 ng on-column. Collision induced dissociation (CID) spectra of all putative karlotoxins were recorded to present fragmentation patterns of each compound for their unambiguous identification. Bulk cultures of K. veneficum strain K10 isolated from an embayment of the Ebro Delta, NW Mediterranean, yielded five previously unreported putative karlotoxins with molecular masses 1280, 1298, 1332, 1356, and 1400 Da, and similar fragments to KmTx-5. Analysis of several isolates of K. veneficum from the Ebro Delta revealed small-scale diversity in the karlotoxin spectrum in that one isolate from Fangar Bay produced KmTx-5, whereas the five putative novel karlotoxins were found among several isolates from nearby, but hydrographically distinct Alfacs Bay. Application of this LC-MS/MS method represents an incremental advance in the determination of putative karlotoxins, particularly in the absence of a complete spectrum of purified analytical standards of known specific potency.


Asunto(s)
Organismos Acuáticos/química , Dinoflagelados/química , Toxinas Marinas/química , Cromatografía Liquida/métodos , Dinoflagelados/aislamiento & purificación , Mar Mediterráneo , Polienos/química , Piranos/química , Espectrometría de Masas en Tándem/métodos
17.
Bioresour Technol ; 245(Pt A): 250-257, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28892698

RESUMEN

The shear-sensitive dinoflagellate microalga Karlodinium veneficum was grown in a sparged bubble column photobioreactor. The influence of mass transfer and shear stress on cell growth and physiology (concentration of reactive oxygen species, membrane fluidity and photosynthetic efficiency) was studied, and a model describing cell growth in term of mass transfer and culture parameters (nozzle sparger diameter, air flow rate, and culture height) was developed. The results show that mass transfer limits cell growth at low air-flow rates, whereas the shear stress produced by the presence of bubbles is critically detrimental for air flow rates above 0.1vvm. The model developed in this paper adequately represents the growth of K. veneficum. Moreover, the parameters of the model indicate that bubble rupture is much more harmful for cells than bubble formation.


Asunto(s)
Dinoflagelados , Fotobiorreactores , Microalgas , Fotosíntesis , Especies Reactivas de Oxígeno
18.
Crit Rev Biotechnol ; 37(8): 1006-1023, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28427282

RESUMEN

The economic and/or energetic feasibility of processes based on using microalgae biomass requires an efficient cultivation system. In photobioreactors (PBRs), the adhesion of microalgae to the transparent PBR surfaces leads to biofouling and reduces the solar radiation penetrating the PBR. Light reduction within the PBR decreases biomass productivity and, therefore, the photosynthetic efficiency of the cultivation system. Additionally, PBR biofouling leads to a series of further undesirable events including changes in cell pigmentation, culture degradation, and contamination by invasive microorganisms; all of which can result in the cultivation process having to be stopped. Designing PBR surfaces with proper materials, functional groups or surface coatings, to prevent microalgal adhesion is essential for solving the biofouling problem. Such a significant advance in microalgal biotechnology would enable extended operational periods at high productivity and reduce maintenance costs. In this paper, we review the few systematic studies performed so far and applied the existing thermodynamic and colloidal theories for microbial biofouling formation in order to understand microalgal adhesion on PBR surfaces and the microalgae-microalgae cell interactions. Their relationship to the physicochemical properties of the solid PBR surface, the microalgae cell surfaces, and the ionic strength of the culture medium is discussed. The suitability and the applicability of such theories are reviewed. To this end, an example of biofouling formation on a commercial glass surface is presented for the marine microalgae Nannochloropsis gaditana. It highlights the adhesion dynamics and the inaccuracies of the process and the need for further refinement of previous theories so as to apply them to flowing systems, such as is the case for PBRs used to culture microalgae.


Asunto(s)
Incrustaciones Biológicas , Microalgas , Biomasa , Fotobiorreactores , Fotosíntesis
19.
Toxins (Basel) ; 6(1): 229-53, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24394642

RESUMEN

Benthic marine dioflagellate microalgae belonging to the genus Prorocentrum are a major source of okadaic acid (OA), OA analogues and polyketides. However, dinoflagellates produce these valuable toxins and bioactives in tiny quantities, and they grow slowly compared to other commercially used microalgae. This hinders evaluation in possible large-scale applications. The careful selection of producer species is therefore crucial for success in a hypothetical scale-up of culture, as are appropriate environmental conditions for optimal growth. A clone of the marine toxic dinoflagellate P. belizeanum was studied in vitro to evaluate its capacities to grow and produce OA as an indicator of general polyketide toxin production under the simultaneous influence of temperature (T) and irradiance (I0). Three temperatures and four irradiance levels were tested (18, 25 and 28 °C; 20, 40, 80 and 120 µE·(m-2)·s(-1)), and the response variables measured were concentration of cells, maximum photochemical yield of photosystem II (PSII), pigments and OA. Experiments were conducted in T-flasks, since their parallelepipedal geometry proved ideal to ensure optically thin cultures, which are essential for reliable modeling of growth-irradiance curves. The net maximum specific growth rate (µ(m)) was 0.204 day(-1) at 25 °C and 40 µE·(m-2)·s(-1). Photo-inhibition was observed at I0 > 40 µEm(-2)s(-1), leading to culture death at 120 µE·m(-2)·s(-1) and 28 °C. Cells at I0 ≥ 80 µE·m(-2)·s(-1) were photoinhibited irrespective of the temperature assayed. A mechanistic model for µ(m)-I0 curves and another empirical model for relating µ(m)-T satisfactorily interpreted the growth kinetics obtained. ANOVA for responses of PSII maximum photochemical yield and pigment profile has demonstrated that P. belizeanum is extremely light sensitive. The pool of photoprotective pigments (diadinoxanthin and dinoxanthin) and peridinin was not able to regulate the excessive light-absorption at high I0-T. OA synthesis in cells was decoupled from optimal growth conditions, as OA overproduction was observed at high temperatures and when both temperature and irradiance were low. T-flask culture observations were consistent with preliminary assays outdoors.


Asunto(s)
Dinoflagelados/metabolismo , Luz , Ácido Ocadaico/metabolismo , Temperatura , Carotenoides/análisis , Clorofila/análisis , Cromatografía Líquida de Alta Presión , Dinoflagelados/crecimiento & desarrollo , Dinoflagelados/efectos de la radiación , Modelos Teóricos , Ácido Ocadaico/análogos & derivados , Fotobiorreactores , Xantófilas/análisis , beta Caroteno/análisis
20.
Cytotechnology ; 65(4): 655-62, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23765215

RESUMEN

The cell growth and monoclonal antibody production of the 55-6 hybridoma cell co-cultured with the murine thymoma cell line EL-4 at different initial 55-6:EL-4 ratios were investigated. Both populations were seeded in co-culture without previous stimulation and therefore with low constitutive CD40 and CD40 ligand (CD154) expression levels, and in the absence of exogenous co-stimuli. Viable cell density and growth rate data seem to suggest a competition for nutrients, which is detrimental for both cells in terms of biomass production and also of growth rate for 55-6. Final concentrations of antibody and specific antibody production rates were affected by the initial 55-6:EL-4 ratio. The 4:1 ratio yielded the highest IgG2a concentration, whereas the highest specific antibody production rate was obtained at the 2:1 ratio. Changes mainly in CD154 and also in CD40 expression in co-cultures could suggest cross-talk between both populations. In conclusion, different types of interactions are probably present in this co-culture system: competition for nutrients, cognate interaction and/or autocrine or paracrine interactions that influence the proliferation of both cells and the hybridoma antibody secretion. We are hereby presenting a pre-scale-up process that could speed up the optimization of large-scale monoclonal antibodies production in bioreactors by emulating the in vivo cell-cell interaction between B and T cells without previous stimulation or the addition of co-stimulatory molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...