Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 250: 849-855, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31085470

RESUMEN

In this study a microbial consortium, dominated by members of the genera Marinobacter and Alcanivorax (Gammaproteobacteria) isolated from marine sediments of Southern Gulf of Mexico, was assessed to grow in a bubble column bioreactor using 13 g L-1 of diesel (aliphatic and aromatic hydrocarbons mix including nonane and hexadecane) as the sole carbon source. The consortium was able to produce 3.3 g L-1 of biomass, measured as suspended solids. Microbial growth was detectable, even substrate depletion, after 8 days of cultivation. The emulsifier activity and its influence on the droplet size were also evaluated: it was observed that droplet diameter decreases as emulsifier activity increases. The bubble column bioreactor system proposed in this research could be used as a biotechnological process for the remediation of a contaminated body in important petrochemical regions, for example, Veracruz, México, where some points of sea and fresh-water bodies were analysed to find nonane and hexadecane in all sample water. It is important due to a lack of information, regarding hydrocarbon pollution in this port area, is filled.


Asunto(s)
Gammaproteobacteria/crecimiento & desarrollo , Gasolina/análisis , Sedimentos Geológicos/microbiología , Consorcios Microbianos , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Emulsiones , Golfo de México , Agua de Mar/microbiología
2.
J Appl Microbiol ; 127(2): 495-507, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31077511

RESUMEN

AIMS: The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment. METHODS AND RESULTS: The bacterial community effectively removed 76·49% of total petroleum hydrocarbons after 30 days, as evidenced by GC-FID and GC-MS analyses. Short-chain alkanes and specific aromatic compounds were completely degraded within the first 6 days. High-throughput sequencing of 16S rRNA gene indicated that the starting bacterial community was mainly composed by Marinobacter and more than 30 non-dominant genera. Bacterial succession was dependent on the hydrocarbon uptake with Alcanivorax becoming dominant during the highest degradation period. Sparse correlations for compositional data algorithm revealed one operational taxonomic unit (OTU) of Muricauda and an assembly of six OTUs of Alcanivorax dieselolei and Alcanivorax hongdengensis as critical keystone components for the consortium network maintenance and stability. CONCLUSIONS: This work exhibits a stabilized marine bacterial consortium with the capability to efficiently degrade light crude oil in 6 days, under laboratory conditions. Successional and interaction patterns were observed in response to hydrocarbon consumption, highlighting potential interactions between Alcanivorax and keystone non-dominant OTUs over time. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results contribute to the understanding of interactions and potential roles of specific members of hydrocarbonoclastic marine bacterial communities, which will be useful for further bioaugmentation studies concerning the associations between indigenous and introduced micro-organisms.


Asunto(s)
Bacterias/metabolismo , Consorcios Microbianos , Petróleo/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Golfo de México , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...