Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 171865, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518824

RESUMEN

Atmospheric nitrogen (N) deposition in Mediterranean sclerophyllous forests of Holm oak (Quercus rotundifolia, Q. ilex) in Spain often exceeds empirical critical loads established for ecosystem conservation. There are still uncertainties on the capacity of canopy retention and uptake of the atmospheric N deposited of these forests. Studying and analysing all the forest nitrogen-cycle processes is essential to understand the potential effect of N deposition in these ecosystems. This study conducted a year-long short-term fertilisation experiment with labelled ammonium (15N-NH4) and nitrate (15N-NO3) to estimate foliar N absorption rates and assess the influence of leaf phenology and meteorological seasonal variations. Fertilising solutions were prepared to simulate low and high wet N deposition concentration, based on data reported from previous studies. Additionally, ecophysiological and meteorological measurements were collected to explore potential relationships between absorption rates, plant activity, and weather conditions. The results showed that Holm oak leaves were able to absorb both oxidised and reduced N compounds, with higher rates of NH4+ absorption. N recovery of both NH4+ and NO3- was higher in the low concentration treatments, suggesting reduced effectiveness of absorption as concentration increases. Foliar absorption rates were leaf-age dependent, with the highest values observed in young developing leaves. Foliar uptake showed seasonal changes with a clear reduction during the summer, linked to drought and dry weather conditions, and showing also smaller leaf net assimilation and stomatal conductance. During the rest of the year, foliar N absorption was not clearly associated to plant physiological activity but with environmental conditions. Our findings suggest that Holm oak canopies could absorb an important part of the incoming N deposition, but this process is compound, season and leaf phenology dependent. Further research is therefore needed to better understand and model this part of the N cycle.


Asunto(s)
Ecosistema , Quercus , Nitrógeno/análisis , Bosques , España , Plantas , Hojas de la Planta/química , Fertilización , Quercus/fisiología , Árboles
2.
Sci Total Environ ; 905: 166923, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37704133

RESUMEN

Plastic production continues to increase every year, yet it is widely acknowledged that a significant portion of this material ends up in ecosystems as microplastics (MPs). Among all the environmental compartments affected by MPs, the atmosphere remains the least well-known. Here, we conducted a one-year simultaneous monitoring of atmospheric MPs deposition in ten urban areas, each with different population sizes, economic activities, and climates. The objective was to assess the role of the atmosphere in the fate of MPs by conducting a nationwide quantification of atmospheric MP deposition. To achieve this, we deployed collectors in ten different urban areas across continental Spain and the Canary Islands. We implemented a systematic sampling methodology with rigorous quality control/quality assurance, along with particle-oriented identification and quantification of anthropogenic particle deposition, which included MPs and industrially processed natural fibres. Among the sampled MPs, polyester fibres were the most abundant, followed by acrylic polymers, polypropylene, and alkyd resins. Their equivalent sizes ranged from 22 µm to 398 µm, with a median value of 71 µm. The particle size distribution of MPs showed fewer large particles than expected from a three-dimensional fractal fragmentation pattern, which was attributed to the higher mobility of small particles, especially fibres. The atmospheric deposition rate of MPs ranged from 5.6 to 78.6 MPs m-2 day-1, with the higher values observed in densely populated areas such as Barcelona and Madrid. Additionally, we detected natural polymers, mostly cellulosic fibres with evidence of industrial processing, with a deposition rate ranging from 6.4 to 58.6 particles m-2 day-1. There was a positive correlation was found between the population of the study area and the median of atmospheric MP deposition, supporting the hypothesis that urban areas act as sources of atmospheric MPs. Our study presents a systematic methodology for monitoring atmospheric MP deposition.

3.
Glob Chang Biol ; 28(17): 5062-5085, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35642454

RESUMEN

Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.


Asunto(s)
Contaminación del Aire , Cambio Climático , Contaminación del Aire/efectos adversos , Ecosistema , Bosques , Árboles
4.
Environ Res ; 211: 113048, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35257686

RESUMEN

Tropospheric ozone (O3) is one of the most concernedair pollutants dueto its widespread impacts on land vegetated ecosystems and human health. Ozone is also the third greenhouse gas for radiative forcing. Consequently, it should be carefully and continuously monitored to estimate its potential adverse impacts especially inthose regions where concentrations are high. Continuous large-scale O3 concentrations measurement is crucial but may be unfeasible because of economic and practical limitations; therefore, quantifying the real impact of O3over large areas is currently an open challenge. Thus, one of the final objectives of O3 modelling is to reproduce maps of continuous concentrations (both spatially and temporally) and risk assessment for human and ecosystem health. We here reviewedthe most relevant approaches used for O3 modelling and mapping starting from the simplest geo-statistical approaches andincreasing in complexity up to simulations embedded into the global/regional circulation models and pro and cons of each mode are highlighted. The analysis showed that a simpler approach (mostly statistical models) is suitable for mappingO3concentrationsat the local scale, where enough O3concentration data are available. The associated error in mapping can be reduced by using more complex methodologies, based on co-variables. The models available at the regional or global level are used depending on the needed resolution and the domain where they are applied to. Increasing the resolution corresponds to an increase in the prediction but only up to a certain limit. However, with any approach, the ensemble models should be preferred.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/análisis , Ecosistema , Humanos , Ozono/análisis , Medición de Riesgo
5.
Atmos Chem Phys ; 18(14): 10199-10218, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30450115

RESUMEN

The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.

6.
Environ Pollut ; 243(Pt A): 427-436, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30212797

RESUMEN

In Mediterranean areas, dry deposition is a major component of the total atmospheric N input to natural habitats, particularly to forest ecosystems. An innovative approach, combining the empirical inferential method (EIM) for surface deposition of NO3- and NH4+ with stomatal uptake of NH3, HNO3 and NO2 derived from the DO3SE (Deposition of Ozone and Stomatal Exchange) model, was used to estimate total dry deposition of inorganic N air pollutants in four holm oak forests under Mediterranean conditions in Spain. The estimated total deposition varied among the sites and matched the geographical patterns previously found in model estimates: higher deposition was determined at the northern site (28.9 kg N ha-1 year-1) and at the northeastern sites (17.8 and 12.5 kg N ha-1 year-1) than at the central-Spain site (9.4 kg N ha-1 year-1). On average, the estimated dry deposition of atmospheric N represented 77% ±â€¯2% of the total deposition of N, of which surface deposition of gaseous and particulate atmospheric N averaged 10.0 ±â€¯2.9 kg N ha-1 year-1 for the four sites (58% of the total deposition), and stomatal deposition of N gases averaged 3.3 ±â€¯0.8 kg N ha-1 year-1 (19% of the total deposition). Deposition of atmospheric inorganic N was dominated by the surface deposition of oxidized N in all the forests (means of 54% and 42% of the dry and total deposition, respectively). The relative contribution of NO2 to dry deposition averaged from 19% in the peri-urban forests to 11% in the most natural site. During the monitoring period, the empirical critical loads provisionally proposed for ecosystem protection (10-20 kg N ha-1 year-1) was exceeded in three of the four studied forests.


Asunto(s)
Bosques , Nitrógeno/análisis , Hojas de la Planta/química , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Modelos Químicos , España
7.
Environ Sci Pollut Res Int ; 24(34): 26213-26226, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28386886

RESUMEN

To assess the impact of nitrogen (N) pollutants on forest ecosystems, the role of the interactions in the canopy needs to be understood. A great number of studies have addressed this issue in heavily N-polluted regions in north and central Europe. Much less information is available for the Iberian Peninsula, and yet this region is home to mountain forests and alpine grasslands that may be at risk due to excessive N deposition. To establish the basis for ecology-based policies, there is a need to better understand the forest response to this atmospheric impact. To fill this gap, in this study, we measured N deposition (as bulk, wet, and throughfall fluxes of dissolved inorganic nitrogen) and air N gas concentrations from 2011 to 2013 at four Spanish holm oak (Quercus ilex) forests located in different pollution environments. One site was in an area of intensive agriculture, two sites were influenced by big cities (Madrid and Barcelona, respectively), and one site was in a rural mountain environment 40 km north of Barcelona. Wet deposition ranged between 0.54 and 3.8 kg N ha-1 year-1 for ammonium (NH4+)-N and between 0.65 and 2.1 kg N ha-1 year-1 for nitrate (NO3-)-N, with the lowest deposition at the Madrid site for both components. Dry deposition was evaluated with three different approaches: (1) a canopy budget model based in throughfall measurements, (2) a branch washing method, and (3) inferential calculations. Taking the average dry deposition from these methods, dry deposition represented 51-67% (reduced N) and 72-75% (oxidized N) of total N deposition. Canopies retained both NH4+-N and NO3-N, with a higher retention at the agricultural and rural sites (50-60%) than at sites located close to big cities (20-35%, though more uncertainty was found for the site near Madrid), thereby highlighting the role of the forest canopy in processing N pollutant emissions.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Bosques , Nitrógeno/toxicidad , Agricultura , Contaminantes Atmosféricos/análisis , Compuestos de Amonio/análisis , Compuestos de Amonio/toxicidad , Ciudades , Ecosistema , Monitoreo del Ambiente/métodos , Europa (Continente) , Nitrógeno/química , Quercus/efectos de los fármacos , Quercus/crecimiento & desarrollo , Árboles/efectos de los fármacos , Árboles/crecimiento & desarrollo
8.
Environ Pollut ; 216: 653-661, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27344084

RESUMEN

Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work, bulk and throughfall deposition of inorganic nitrogen were monitored in three different holm oak forests in Spain during two years. The results obtained with IECs were contrasted with a conventional technique using bottle collectors and with a literature review of similar studies. The performance of IECs in comparison with the conventional method was good for measuring bulk deposition of nitrate and acceptable for ammonium and total dissolved inorganic nitrogen. Mean annual bulk deposition of inorganic nitrogen ranged 3.09-5.43 kg N ha(-1) according to IEC methodology, and 2.42-6.83 kg N ha(-1) y(-1) using the conventional method. Intra-annual variability of the net throughfall deposition of nitrogen measured with the conventional method revealed the existence of input pulses of nitrogen into the forest soil after dry periods, presumably originated from the washing of dry deposition accumulated in the canopy. Important methodological recommendations on the IEC method and discussed, compiled and summarized.


Asunto(s)
Compuestos de Amonio/análisis , Monitoreo del Ambiente/métodos , Bosques , Nitratos/análisis , Ciclo del Nitrógeno , Ecosistema , Resinas de Intercambio Iónico , Región Mediterránea , Nitrógeno/análisis , Quercus , Suelo , España
9.
Environ Sci Pollut Res Int ; 23(7): 6400-13, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26620865

RESUMEN

Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Ácido Nítrico/análisis , Dióxido de Nitrógeno/análisis , Ozono/análisis , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Bosques , Material Particulado/análisis , Quercus/crecimiento & desarrollo , España , Tiempo (Meteorología)
10.
Sci Total Environ ; 407(23): 6034-43, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19737674

RESUMEN

Anthropogenic activities influence past and present nitrate levels recorded in European stream waters, posing a threat to aquatic biota and human beings. Scarce information on temporal trends of nitrate concentration and its causes is available for Mediterranean catchments. This study presents the evolution of nitrate concentrations over 25 years in stream waters of the Ebro River Basin (Spain), a large Mediterranean catchment involving 85,566 km(2). Nitrate concentration increased with time in 46% of the 65 sites involved in the study. Agricultural cover of 30 hydrologically independent sub-catchments was the main land use related to nitrate concentration (R(2)=0.69). Throughout the 25 year-period, the sites showing increased nitrate concentrations with time (trend sites) also presented an enhanced influence of agricultural cover on nitrate concentrations along the time frame of the study. As a result of these temporal changes, at the end of the studied period nitrate concentrations in stream waters responded similarly to agricultural cover in both trend and non-trend sites, showing non significant differences in the slope of the resultant regression models. At this time, agricultural cover explained 82% of the variability found in nitrate levels. If these trends remain unchanged, in 2015 many of the water bodies considered in this study would not comply with the requirements of the European Union Water Framework Directive (WFD). Therefore management decisions, mainly associated to agricultural practices, should be implemented as soon as possible at the catchment level to meet WFD objectives.


Asunto(s)
Agricultura , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Agua Dulce/química , Región Mediterránea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...