Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 17(1): 2031504, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35105280

RESUMEN

For the establishment of the Arbuscular Mycorrhiza (AM) symbiosis it is essential that epidermis and cortical cells from plant roots suffer a strong reorganization to allow the penetration of intracellular fungal hyphae. In the same manner, the new formation of a periarbuscular membrane and a symbiotic interface with specific compositions are required for a functional symbiosis. It is believed that the cytoskeleton of the plant host plays an essential role in these processes, particularly the microtubule (MT) cytoskeleton, as huge modifications have been observed in the MT array of root cells accompanying the establishment of the AM symbiosis. Recent research has established a link between microtubule rearrangements and arbuscule functioning. However, further research is required to elucidate the specific functions of MT cytoskeleton along the different stages of the arbuscule life cycle and to unravel the signals triggering these changes.


Asunto(s)
Micorrizas , Micorrizas/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Simbiosis , Microtúbulos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Vis Exp ; (157)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32225152

RESUMEN

Ralstonia solanacearum is a devastating soil borne vascular pathogen that can infect a large range of plant species, causing an important threat to agriculture. However, the Ralstonia model is considerably underexplored in comparison to other models involving bacterial plant pathogens, such as Pseudomonas syringae in Arabidopsis. Research targeted to understanding the interaction between Ralstonia and crop plants is essential to develop sustainable solutions to fight against bacterial wilt disease but is currently hindered by the lack of straightforward experimental assays to characterize the different components of the interaction in native host plants. In this scenario, we have developed a method to perform genetic analysis of Ralstonia infection of tomato, a natural host of Ralstonia. This method is based on Agrobacterium rhizogenes-mediated transformation of tomato roots, followed by Ralstonia soil-drenching inoculation of the resulting plants, containing transformed roots expressing the construct of interest. The versatility of the root transformation assay allows performing either gene overexpression or gene silencing mediated by RNAi. As a proof of concept, we used this method to show that RNAi-mediated silencing of SlCESA6 in tomato roots conferred resistance to Ralstonia. Here, we describe this method in detail, enabling genetic approaches to understand bacterial wilt disease in a relatively short time and with small requirements of equipment and plant growth space.


Asunto(s)
Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Ralstonia solanacearum/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Transformación Genética , Agrobacterium/metabolismo , Antibacterianos/farmacología , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Ralstonia solanacearum/efectos de los fármacos , Ralstonia solanacearum/crecimiento & desarrollo , Reproducibilidad de los Resultados , Suelo , Transformación Genética/efectos de los fármacos
3.
Plant Methods ; 14: 34, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760765

RESUMEN

BACKGROUND: Solanum lycopersicum, an economically important crop grown worldwide, has been used as a model for the study of arbuscular mycorrhizal (AM) symbiosis in non-legume plants for several years and several cDNA array hybridization studies have revealed specific transcriptomic profiles of mycorrhizal tomato roots. However, a method to easily screen candidate genes which could play an important role during tomato mycorrhization is required. RESULTS: We have developed an optimized procedure for composite tomato plant obtaining achieved through Agrobacterium rhizogenes-mediated transformation. This protocol involves the unusual in vitro culture of composite plants between two filter papers placed on the culture media. In addition, we show that DsRed is an appropriate molecular marker for the precise selection of cotransformed tomato hairy roots. S. lycopersicum composite plant hairy roots appear to be colonized by the AM fungus Rhizophagus irregularis in a manner similar to that of normal roots, and a modified construct useful for localizing the expression of promoters putatively associated with mycorrhization was developed and tested. CONCLUSIONS: In this study, we present an easy, fast and low-cost procedure to study AM symbiosis in tomato roots.

4.
Front Plant Sci ; 7: 1273, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27602046

RESUMEN

Plant hormones have become appropriate candidates for driving functional plant mycorrhization programs, including the processes that regulate the formation of arbuscules in arbuscular mycorrhizal (AM) symbiosis. Here, we examine the role played by ABA/GA interactions regulating the formation of AM in tomato. We report differences in ABA and GA metabolism between control and mycorrhizal roots. Active synthesis and catabolism of ABA occur in AM roots. GAs level increases as a consequence of a symbiosis-induced mechanism that requires functional arbuscules which in turn is dependent on a functional ABA pathway. A negative interaction in their metabolism has been demonstrated. ABA attenuates GA-biosynthetic and increases GA-catabolic gene expression leading to a reduction in bioactive GAs. Vice versa, GA activated ABA catabolism mainly in mycorrhizal roots. The negative impact of GA3 on arbuscule abundance in wild-type plants is partially offset by treatment with ABA and the application of a GA biosynthesis inhibitor rescued the arbuscule abundance in the ABA-deficient sitiens mutant. These findings, coupled with the evidence that ABA application leads to reduce bioactive GA1, support the hypothesis that ABA could act modifying bioactive GA level to regulate AM. Taken together, our results suggest that these hormones perform essential functions and antagonize each other by oppositely regulating AM formation in tomato roots.

5.
New Phytol ; 205(4): 1431-1436, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25580981

RESUMEN

For survival, plants have to efficiently adjust their phenotype to environmental challenges, finely coordinating their responses to balance growth and defence. Such phenotypic plasticity can be modulated by their associated microbiota. The widespread mycorrhizal symbioses modify plant responses to external stimuli, generally improving the resilience of the symbiotic system to environmental stresses. Phytohormones, central regulators of plant development and immunity, are instrumental in orchestrating plant responses to the fluctuating environment, but also in the regulation of mycorrhizal symbioses. Exciting advances in the molecular regulation of phytohormone signalling are providing mechanistic insights into how plants coordinate their responses to environmental cues and mycorrhizal functioning. Here, we summarize how these mechanisms permit the fine-tuning of the symbiosis according to the ever-changing environment.


Asunto(s)
Ambiente , Micorrizas/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Simbiosis/fisiología , Homeostasis/efectos de los fármacos , Micorrizas/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Simbiosis/efectos de los fármacos
6.
Plant Signal Behav ; 7(12): 1584-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23073021

RESUMEN

The establishment of an Arbuscular Mycorrhizal symbiotic interaction (MA) is a successful strategy to substantially promote plant growth, development and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the recognition and establishment of symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, the jasmonates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed upregulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and point a key regulatory feature for oxylipins during AM symbiosis in tomato, particularly these derived from the action of 9-lipoxygenases (9-LOX). In this mini-review we highlight recent progress understanding the function of oxylipins in the establishment of the AM symbiosis and hypothesize that the activation of the 9-LOX pathway might be part of the activation of host defense responses which will then contribute to both, the control of AM fungal spread and the increased resistance to fungal pathogens in mycorrhizal plants.


Asunto(s)
Micorrizas/fisiología , Oxilipinas/metabolismo , Plantas/metabolismo , Plantas/microbiología , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
7.
Mycorrhiza ; 22(3): 189-94, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21674299

RESUMEN

The effect of the arbuscular mycorrhizal symbiosis (AM) varies in plant cultivars. In the present study, we tested whether wild-type, old and modern tomato cultivars differ in the parameters of the AM interaction. Moreover, the bioprotective effect of AM against the soilborne tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol) was tested in the different cultivars. Ten tomato cultivars were inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus mosseae alone or in combination with Fol. At the end of the experiment, AM root colonization, Fusarium infection, and the plant fresh weight was determined. The tomato cultivars differed in their susceptibility to AMF and Fol, but these differences were not cultivar age dependent. In all the cultivars affected by Fol, mycorrhization showed a bioprotective effect. Independent of the cultivar age, tomato cultivars differ in their susceptibility to AMF and Fol and the bioprotective effect of mycorrhization, indicating that the cultivar age does not affect the AM parameters tested in this study.


Asunto(s)
Fusarium/fisiología , Glomeromycota/fisiología , Micorrizas/fisiología , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Fusarium/patogenicidad , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA