Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37756637

RESUMEN

MSH1 is an organellar targeted protein that obstructs ectopic recombination and the accumulation of mutations in plant organellar genomes. MSH1 also modulates the epigenetic status of nuclear DNA, and its absence induces a variety of phenotypic responses. MSH1 is a member of the MutS family of DNA mismatch repair proteins but harbors an additional GIY-YIG nuclease domain that distinguishes it from the rest of this family. How MSH1 hampers recombination and promotes fidelity in organellar DNA inheritance is unknown. Here, we elucidate its enzymatic activities by recombinantly expressing and purifying full-length MSH1 from Arabidopsis thaliana (AtMSH1). AtMSH1 is a metalloenzyme that shows a strong binding affinity for displacement loops (D-loops). The DNA binding abilities of AtMSH1 reside in its MutS domain and not in its GIY-YIG domain, which is the ancillary nickase of AtMSH1. In the presence of divalent metal ions, AtMSH1 selectively executes multiple incisions at D-loops, but not other DNA structures including Holliday junctions or dsDNA, regardless of the presence or absence of mismatches. The selectivity of AtMSH1 to dismantle D-loops supports the role of this enzyme in preventing recombination between short repeats. Our results suggest that plant organelles have evolved novel DNA repair routes centered around the anti-recombinogenic activity of MSH1.

2.
Sci Rep ; 11(1): 20582, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663822

RESUMEN

PrimPol is a novel Primase-Polymerase that synthesizes RNA and DNA primers de novo and extents from these primers as a DNA polymerase. Animal PrimPol is involved in nuclear and mitochondrial DNA replication by virtue of its translesion DNA synthesis (TLS) and repriming activities. Here we report that the plant model Arabidopsis thaliana encodes a functional PrimPol (AtPrimPol). AtPrimPol is a low fidelity and a TLS polymerase capable to bypass DNA lesions, like thymine glycol and abasic sites, by incorporating directly across these lesions or by skipping them. AtPrimPol is also an efficient primase that preferentially recognizes the single-stranded 3'-GTCG-5' DNA sequence, where the 3'-G is cryptic. AtPrimPol is the first DNA polymerase that localizes in three cellular compartments: nucleus, mitochondria, and chloroplast. In vitro, AtPrimPol synthesizes primers that are extended by the plant organellar DNA polymerases and this reaction is regulated by organellar single-stranded binding proteins. Given the constant exposure of plants to endogenous and exogenous DNA-damaging agents and the enzymatic capabilities of lesion bypass and re-priming of AtPrimPol, we postulate a predominant role of this enzyme in avoiding replication fork collapse in all three plant genomes, both as a primase and as a TLS polymerase.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Reparación del ADN/fisiología , Replicación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Mitocondrias/metabolismo , Enzimas Multifuncionales/metabolismo
3.
Front Cell Dev Biol ; 8: 562940, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330447

RESUMEN

The axolotl (Ambystoma mexicanum) is a caudate amphibian, which has an extraordinary ability to restore a wide variety of damaged structures by a process denominated epimorphosis. While the origin and potentiality of progenitor cells that take part during epimorphic regeneration are known to some extent, the metabolic changes experienced and their associated implications, remain unexplored. However, a circuit with a potential role as a modulator of cellular metabolism along regeneration is that formed by Lin28/let-7. In this study, we report two Lin28 paralogs and eight mature let-7 microRNAs encoded in the axolotl genome. Particularly, in the proliferative blastema stage amxLin28B is more abundant in the nuclei of blastemal cells, while the microRNAs amx-let-7c and amx-let-7a are most downregulated. Functional inhibition of Lin28 factors increase the levels of most mature let-7 microRNAs, consistent with an increment of intermediary metabolites of the Krebs cycle, and phenotypic alterations in the outgrowth of the blastema. In summary, we describe the primary components of the Lin28/let-7 circuit and their function during axolotl regeneration, acting upstream of metabolic reprogramming events.

4.
Genes (Basel) ; 11(11)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228188

RESUMEN

The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.


Asunto(s)
Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , Orgánulos/enzimología , Proteínas de Plantas/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reparación del ADN por Unión de Extremidades/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Evolución Molecular , Proteínas de Plantas/metabolismo
5.
Nucleic Acids Res ; 47(6): 3028-3044, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30698803

RESUMEN

Double-stranded breaks (DSBs) in plant organelles are repaired via genomic rearrangements characterized by microhomologous repeats. These microhomologous signatures predict the existence of an unidentified enzymatic machinery capable of repairing of DSBs via microhomology-mediated end-joining (MMEJ) in plant organelles. Here, we show that organellar DNA polymerases from Arabidopsis thaliana (AtPolIA and AtPolIB) perform MMEJ using microhomologous sequences as short as six nucleotides. AtPolIs execute MMEJ by virtue of two specialized amino acid insertions located in their thumb subdomains. Single-stranded binding proteins (SSBs) unique to plants, AtWhirly2 and organellar single-stranded binding proteins (AtOSBs), hinder MMEJ, whereas canonical mitochondrial SSBs (AtmtSSB1 and AtmtSSB2) do not interfere with MMEJ. Our data predict that organellar DNA rearrangements by MMEJ are a consequence of a competition for the 3'-OH of a DSBs. If AtWhirlies or AtOSBs gain access to the single-stranded DNA (ssDNA) region of a DSB, the reaction will shift towards high-fidelity routes like homologous recombination. Conversely MMEJ would be favored if AtPolIs or AtmtSSBs interact with the DSB. AtPolIs are not phylogenetically related to metazoan mitochondrial DNA polymerases, and the ability of AtPolIs to execute MMEJ may explain the abundance of DNA rearrangements in plant organelles in comparison to animal mitochondria.


Asunto(s)
Arabidopsis/genética , Reparación del ADN por Unión de Extremidades/genética , ADN Polimerasa Dirigida por ADN/genética , Recombinación Homóloga/genética , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Nucleótidos/genética , Orgánulos/genética
6.
FEBS J ; 285(21): 4005-4018, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30152200

RESUMEN

The coding sequences of plant mitochondrial and chloroplast genomes present a lower mutation rate than the coding sequences of animal mitochondria. However, plant mitochondrial genomes frequently rearrange and present high mutation rates in their noncoding sequences. DNA replication in plant organelles is carried out by two DNA polymerases (DNAP) paralogs. In Arabidopsis thaliana at least one DNAP paralog (AtPolIA or AtPolIB) is necessary for plant viability, suggesting that both genes are partially redundant. To understand how AtPolIs replicate genomes that present low and high mutation rates, we measured their nucleotide incorporation for all 16-base pair combinations in vitro. AtPolIA presents an error rate of 7.26 × 10-5 , whereas AtPolIB has an error rate of 5.45 × 10-4 . Thus, AtPolIA and AtPolIB are 3.5 and 26-times less accurate than human mitochondrial DNAP γ. The 8-fold difference in fidelity between both AtPolIs results from a higher catalytic efficiency in AtPolIA. Both AtPolIs extend from mismatches and the fidelity of AtPolIs ranks between high fidelity and lesion bypass DNAPs. The different nucleotide incorporation fidelity between AtPolIs predicts a prevalent role of AtPolIA in DNA replication and AtPolIB in DNA repair. We hypothesize that in plant organelles, DNA mismatches generated during DNA replication are repaired via recombination-mediated or DNA mismatch repair mechanisms that selectively target the coding region and that the mismatches generated by AtPolIs may result in the frequent expansion and rearrangements present in plant mitochondrial genomes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Replicación del ADN , ADN de Plantas/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos/genética , Orgánulos/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Orgánulos/genética , Conformación Proteica
7.
DNA Repair (Amst) ; 65: 1-10, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29522990

RESUMEN

Plant mitochondrial and chloroplast genomes encode essential proteins for oxidative phosphorylation and photosynthesis. For proper cellular function, plant organelles must ensure genome integrity. Although plant organelles repair damaged DNA using the multi-enzyme Base Excision Repair (BER) pathway, the details of this pathway in plant organelles are largely unknown. The initial enzymatic steps in BER produce a 5'-deoxyribose phosphate (5'-dRP) moiety that must be removed to allow DNA ligation and in plant organelles, the enzymes responsible for the removal of a 5'-dRP group are unknown. In metazoans, DNA polymerases (DNAPs) remove the 5'-dRP moiety using their intrinsic lyase and/or strand-displacement activities during short or long-patch BER sub-pathways, respectively. The plant model Arabidopsis thaliana encodes two family-A DNAPs paralogs, AtPolIA and AtPolIB, which are the sole DNAPs in plant organelles identified to date. Herein we demonstrate that both AtPolIs present 5'-dRP lyase activities. AtPolIB performs efficient strand-displacement on a BER-associated 1-nt gap DNA substrate, whereas AtPolIA exhibits only moderate strand-displacement activity. Both lyase and strand-displacement activities are dependent on an amino acid insertion that is exclusively present in plant organellar DNAPs. Within this insertion, we identified that residue AtPollB-Lys593 acts as nucleophile for lyase activity. Our results demonstrate that AtPolIs are functionally equipped to play a role in short-patch BER and suggest a major role of AtPolIB in a predicted long-patch BER sub-pathway. We propose that the acquisition of insertion 1 in the polymerization domain of AtPolIs was a key component in their evolution as BER associated and replicative DNAPs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Dominio Catalítico , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Daño del ADN , ADN de Cloroplastos/metabolismo , ADN Mitocondrial/metabolismo , ADN de Plantas/metabolismo , ADN Polimerasa Dirigida por ADN/química , Liasas de Fósforo-Oxígeno/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...