Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 179: 108850, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013340

RESUMEN

BACKGROUND AND OBJECTIVE: Gene Regulatory Network (GRN) inference is a fundamental task in biology and medicine, as it enables a deeper understanding of the intricate mechanisms of gene expression present in organisms. This bioinformatics problem has been addressed in the literature through multiple computational approaches. Techniques developed for inferring from expression data have employed Bayesian networks, ordinary differential equations (ODEs), machine learning, information theory measures and neural networks, among others. The diversity of implementations and their respective customization have led to the emergence of many tools and multiple specialized domains derived from them, understood as subsets of networks with specific characteristics that are challenging to detect a priori. This specialization has introduced significant uncertainty when choosing the most appropriate technique for a particular dataset. This proposal, named MO-GENECI, builds upon the basic idea of the previous proposal GENECI and optimizes consensus among different inference techniques, through a carefully refined multi-objective evolutionary algorithm guided by various objective functions, linked to the biological context at hand. METHODS: MO-GENECI has been tested on an extensive and diverse academic benchmark of 106 gene regulatory networks from multiple sources and sizes. The evaluation of MO-GENECI compared its performance to individual techniques using key metrics (AUROC and AUPR) for gene regulatory network inference. Friedman's statistical ranking provided an ordered classification, followed by non-parametric Holm tests to determine statistical significance. RESULTS: MO-GENECI's Pareto front approximation facilitates easy selection of an appropriate solution based on generic input data characteristics. The best solution consistently emerged as the winner in all statistical tests, and in many cases, the median precision solution showed no statistically significant difference compared to the winner. CONCLUSIONS: MO-GENECI has not only demonstrated achieving more accurate results than individual techniques, but has also overcome the uncertainty associated with the initial choice due to its flexibility and adaptability. It is shown intelligently to select the most suitable techniques for each case. The source code is hosted in a public repository at GitHub under MIT license: https://github.com/AdrianSeguraOrtiz/MO-GENECI. Moreover, to facilitate its installation and use, the software associated with this implementation has been encapsulated in a Python package available at PyPI: https://pypi.org/project/geneci/.

2.
Comput Biol Med ; 155: 106613, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764157

RESUMEN

Explainable Artificial Intelligence (XAI) makes AI understandable to the human user particularly when the model is complex and opaque. Local Interpretable Model-agnostic Explanations (LIME) has an image explainer package that is used to explain deep learning models. The image explainer of LIME needs some parameters to be manually tuned by the expert in advance, including the number of top features to be seen and the number of superpixels in the segmented input image. This parameter tuning is a time-consuming task. Hence, with the aim of developing an image explainer that automizes image segmentation, this paper proposes Ensemble-based Genetic Algorithm Explainer (EGAE) for melanoma cancer detection that automatically detects and presents the informative sections of the image to the user. EGAE has three phases. First, the sparsity of chromosomes in GAs is determined heuristically. Then, multiple GAs are executed consecutively. However, the difference between these GAs are in different number of superpixels in the input image that result in different chromosome lengths. Finally, the results of GAs are ensembled using consensus and majority votings. This paper also introduces how Euclidean distance can be used to calculate the distance between the actual explanation (delineated by experts) and the calculated explanation (computed by the explainer) for accuracy measurement. Experimental results on a melanoma dataset show that EGAE automatically detects informative lesions, and it also improves the accuracy of explanation in comparison with LIME efficiently. The python codes for EGAE, the ground truths delineated by clinicians, and the melanoma detection dataset are available at https://github.com/KhaosResearch/EGAE.


Asunto(s)
Inteligencia Artificial , Melanoma , Humanos , Óxidos
3.
Comput Biol Med ; 155: 106653, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36803795

RESUMEN

Gene regulatory networks define the interactions between DNA products and other substances in cells. Increasing knowledge of these networks improves the level of detail with which the processes that trigger different diseases are described and fosters the development of new therapeutic targets. These networks are usually represented by graphs, and the primary sources for their correct construction are usually time series from differential expression data. The inference of networks from this data type has been approached differently in the literature. Mostly, computational learning techniques have been implemented, which have finally shown some specialization in specific datasets. For this reason, the need arises to create new and more robust strategies for reaching a consensus based on previous results to gain a particular capacity for generalization. This paper presents GENECI (GEne NEtwork Consensus Inference), an evolutionary machine learning approach that acts as an organizer for constructing ensembles to process the results of the main inference techniques reported in the literature and to optimize the consensus network derived from them, according to their confidence levels and topological characteristics. After its design, the proposal was confronted with datasets collected from academic benchmarks (DREAM challenges and IRMA network) to quantify its accuracy. Subsequently, it was applied to a real-world biological network of melanoma patients whose results could be contrasted with medical research collected in the literature. Finally, it has been proved that its ability to optimize the consensus of several networks leads to outstanding robustness and accuracy, gaining a certain generalization capacity after facing the inference of multiple datasets. The source code is hosted in a public repository at GitHub under MIT license: https://github.com/AdrianSeguraOrtiz/GENECI. Moreover, to facilitate its installation and use, the software associated with this implementation has been encapsulated in a python package available at PyPI: https://pypi.org/project/geneci/.


Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos , Humanos , Consenso , Aprendizaje Automático , Factores de Tiempo , Algoritmos
4.
Comput Methods Programs Biomed ; 212: 106496, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34740063

RESUMEN

BACKGROUND AND OBJECTIVES: In the last decade, clinical trial management systems have become an essential support tool for data management and analysis in clinical research. However, these clinical tools have design limitations, since they are currently not able to cover the needs of adaptation to the continuous changes in the practice of the trials due to the heterogeneous and dynamic nature of the clinical research data. These systems are usually proprietary solutions provided by vendors for specific tasks. In this work, we propose FIMED, a software solution for the flexible management of clinical data from multiple trials, moving towards personalized medicine, which can contribute positively by improving clinical researchers quality and ease in clinical trials. METHODS: This tool allows a dynamic and incremental design of patients' profiles in the context of clinical trials, providing a flexible user interface that hides the complexity of using databases. Clinical researchers will be able to define personalized data schemas according to their needs and clinical study specifications. Thus, FIMED allows the incorporation of separate clinical data analysis from multiple trials. RESULTS: The efficiency of the software has been demonstrated by a real-world use case for a clinical assay in Melanoma disease, which has been indeed anonymized to provide a user demonstration. FIMED currently provides three data analysis and visualization components, guaranteeing a clinical exploration for gene expression data: heatmap visualization, clusterheatmap visualization, as well as gene regulatory network inference and visualization. An instance of this tool is freely available on the web at https://khaos.uma.es/fimed. It can be accessed with a demo user account, "researcher", using the password "demo". CONCLUSION: This paper shows FIMED as a flexible and user-friendly way of managing multidimensional clinical research data. Hence, without loss of generality, FIMED is flexible enough to be used in the context of any other disease where clinical data and assays are involved.


Asunto(s)
Manejo de Datos , Programas Informáticos , Bases de Datos Factuales , Redes Reguladoras de Genes , Humanos , Internet , Interfaz Usuario-Computador
5.
Sensors (Basel) ; 19(17)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480709

RESUMEN

Internet of Things (IoT)-based automation of agricultural events can change the agriculture sector from being static and manual to dynamic and smart, leading to enhanced production with reduced human efforts. Precision Agriculture (PA) along with Wireless Sensor Network (WSN) are the main drivers of automation in the agriculture domain. PA uses specific sensors and software to ensure that the crops receive exactly what they need to optimize productivity and sustainability. PA includes retrieving real data about the conditions of soil, crops and weather from the sensors deployed in the fields. High-resolution images of crops are obtained from satellite or air-borne platforms (manned or unmanned), which are further processed to extract information used to provide future decisions. In this paper, a review of near and remote sensor networks in the agriculture domain is presented along with several considerations and challenges. This survey includes wireless communication technologies, sensors, and wireless nodes used to assess the environmental behaviour, the platforms used to obtain spectral images of crops, the common vegetation indices used to analyse spectral images and applications of WSN in agriculture. As a proof of concept, we present a case study showing how WSN-based PA system can be implemented. We propose an IoT-based smart solution for crop health monitoring, which is comprised of two modules. The first module is a wireless sensor network-based system to monitor real-time crop health status. The second module uses a low altitude remote sensing platform to obtain multi-spectral imagery, which is further processed to classify healthy and unhealthy crops. We also highlight the results obtained using a case study and list the challenges and future directions based on our work.


Asunto(s)
Agricultura/métodos , Tecnología Inalámbrica , Redes de Comunicación de Computadores , Productos Agrícolas , Humanos , Tecnología de Sensores Remotos
6.
Comput Biol Chem ; 80: 409-418, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128452

RESUMEN

Reverse engineering of biochemical networks remains an important open challenge in computational systems biology. The goal of model inference is to, based on time-series gene expression data, obtain the sparse topological structure and parameters that quantitatively understand and reproduce the dynamics of biological systems. In this paper, we propose a multi-objective approach for the inference of S-System structures for Gene Regulatory Networks (GRNs) based on Pareto dominance and Pareto optimality theoretical concepts instead of the conventional single-objective evaluation of Mean Squared Error (MSE). Our motivation is that, using a multi-objective formulation for the GRN, it is possible to optimize the sparse topology of a given GRN as well as the kinetic order and rate constant parameters in a decoupled S-System, yet avoiding the use of additional penalty weights. A flexible and robust Multi-Objective Cellular Evolutionary Algorithm is adapted to perform the tasks of parameter learning and network topology inference for the proposed approach. The resulting software, called MONET, is evaluated on real-based academic and synthetic time-series of gene expression taken from the DREAM3 challenge and the IRMA in vivo datasets. The ability to reproduce biological behavior and robustness to noise is assessed and compared. The results obtained are competitive and indicate that the proposed approach offers advantages over previously used methods. In addition, MONET is able to provide experts with a set of trade-off solutions involving GRNs with different typologies and MSEs.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Biología de Sistemas/métodos , Escherichia coli/genética , Galactosa/metabolismo , Glucosa/metabolismo , Modelos Genéticos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
BMC Bioinformatics ; 20(Suppl 4): 150, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30999846

RESUMEN

BACKGROUND: The analysis of gene expression levels is used in many clinical studies to know how patients evolve or to find new genetic biomarkers that could help in clinical decision making. However, the techniques and software available for these analyses are not intended for physicians, but for geneticists. However, enabling physicians to make initial discoveries on these data would benefit in the clinical assay development. RESULTS: Melanoma is a highly immunogenic tumor. Therefore, in recent years physicians have incorporated immune system altering drugs into their therapeutic arsenal against this disease, revolutionizing the treatment of patients with an advanced stage of the cancer. This has led us to explore and deepen our knowledge of the immunology surrounding melanoma, in order to optimize the approach. Within this project we have developed a database for collecting relevant clinical information for melanoma patients, including the storage of patient gene expression levels obtained from the NanoString platform (several samples are taken from each patient). The Immune Profiling Panel is used in this case. This database is being exploited through the analysis of the different expression profiles of the patients. This analysis is being done with Python, and a parallel version of the algorithms is available with Apache Spark to provide scalability as needed. CONCLUSIONS: VIGLA-M, the visual analysis tool for gene expression levels in melanoma patients is available at http://khaos.uma.es/melanoma/ . The platform with real clinical data can be accessed with a demo user account, physician, using password physician_test_7634 (if you encounter any problems, contact us at this email address: mailto: khaos@lcc.uma.es). The initial results of the analysis of gene expression levels using these tools are providing first insights into the patients' evolution. These results are promising, but larger scale tests must be developed once new patients have been sequenced, to discover new genetic biomarkers.


Asunto(s)
Algoritmos , Ciencia de los Datos , Regulación de la Expresión Génica , Análisis por Conglomerados , Bases de Datos Factuales , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Melanoma/genética
8.
Bioinformatics ; 33(19): 3011-3017, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541404

RESUMEN

MOTIVATION: Multiple sequence alignment (MSA) is an NP-complete optimization problem found in computational biology, where the time complexity of finding an optimal alignment raises exponentially along with the number of sequences and their lengths. Additionally, to assess the quality of a MSA, a number of objectives can be taken into account, such as maximizing the sum-of-pairs, maximizing the totally conserved columns, minimizing the number of gaps, or maximizing structural information based scores such as STRIKE. An approach to deal with MSA problems is to use multi-objective metaheuristics, which are non-exact stochastic optimization methods that can produce high quality solutions to complex problems having two or more objectives to be optimized at the same time. Our motivation is to provide a multi-objective metaheuristic for MSA that can run in parallel taking advantage of multi-core-based computers. RESULTS: The software tool we propose, called M2Align (Multi-objective Multiple Sequence Alignment), is a parallel and more efficient version of the three-objective optimizer for sequence alignments MO-SAStrE, able of reducing the algorithm computing time by exploiting the computing capabilities of common multi-core CPU clusters. Our performance evaluation over datasets of the benchmark BAliBASE (v3.0) shows that significant time reductions can be achieved by using up to 20 cores. Even in sequential executions, M2Align is faster than MO-SAStrE, thanks to the encoding method used for the alignments. AVAILABILITY AND IMPLEMENTATION: M2Align is an open source project hosted in GitHub, where the source code and sample datasets can be freely obtained: https://github.com/KhaosResearch/M2Align. CONTACT: antonio@lcc.uma.es. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Alineación de Secuencia/métodos , Programas Informáticos , Algoritmos
9.
Molecules ; 21(11)2016 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-27869781

RESUMEN

The human Epidermal Growth Factor (EGFR) plays an important role in signaling pathways, such as cell proliferation and migration. Mutations like G719S, L858R, T790M, G719S/T790M or T790M/L858R can alter its conformation, and, therefore, drug responses from lung cancer patients. In this context, candidate drugs are being tested and in silico studies are necessary to know how these mutations affect the ligand binding site. This problem can be tackled by using a multi-objective approach applied to the molecular docking problem. According to the literature, few studies are related to the application of multi-objective approaches by minimizing two or more objectives in drug discovery. In this study, we have used four algorithms (NSGA-II, GDE3, SMPSO and MOEA/D) to minimize two objectives: the ligand-receptor intermolecular energy and the RMSD score. We have prepared a set of instances that includes the wild-type EGFR kinase domain and the same receptor with somatic mutations, and then we assessed the performance of the algorithms by applying a quality indicator to evaluate the convergence and diversity of the reference fronts. The MOEA/D algorithm yields the best solutions to these docking problems. The obtained solutions were analyzed, showing promising results to predict candidate EGFR inhibitors by using this multi-objective approach.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/química , Receptores ErbB/genética , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Algoritmos , Sitios de Unión , Humanos , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa
10.
Molecules ; 20(6): 10154-83, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26042856

RESUMEN

Molecular docking is a hard optimization problem that has been tackled in the past with metaheuristics, demonstrating new and challenging results when looking for one objective: the minimum binding energy. However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this paper, we use and compare, for the first time, a set of representative multi-objective optimization algorithms applied to solve complex molecular docking problems. The approach followed is focused on optimizing the intermolecular and intramolecular energies as two main objectives to minimize. Specifically, these algorithms are: two variants of the non-dominated sorting genetic algorithm II (NSGA-II), speed modulation multi-objective particle swarm optimization (SMPSO), third evolution step of generalized differential evolution (GDE3), multi-objective evolutionary algorithm based on decomposition (MOEA/D) and S-metric evolutionary multi-objective optimization (SMS-EMOA). We assess the performance of the algorithms by applying quality indicators intended to measure convergence and the diversity of the generated Pareto front approximations. We carry out a comparison with another reference mono-objective algorithm in the problem domain (Lamarckian genetic algorithm (LGA) provided by the AutoDock tool). Furthermore, the ligand binding site and molecular interactions of computed solutions are analyzed, showing promising results for the multi-objective approaches. In addition, a case study of application for aeroplysinin-1 is performed, showing the effectiveness of our multi-objective approach in drug discovery.


Asunto(s)
Acetonitrilos/química , Algoritmos , Ciclohexenos/química , Receptores ErbB/química , Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/química , Simulación del Acoplamiento Molecular/métodos , Sitios de Unión , Descubrimiento de Drogas , Receptores ErbB/antagonistas & inhibidores , VIH-1/química , VIH-1/enzimología , Humanos , Ligandos , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA