Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(10): e0290551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37883506

RESUMEN

The objective of the study was to characterize adaptations of hepatic metabolism of dairy cows of two Holstein strains with varying proportions of grazing in the feeding strategy. Multiparous autumn calving Holstein cows of New Zealand (NZH) and North American (NAH) strains were assigned to a randomized complete block design with a 2 x 2 factorial arrangement with two feeding strategies that varied in the proportions of pasture and supplementation: maximum pasture and supplementation with a pelleted concentrate (MaxP) or fixed pasture and supplementation with a total mixed ration (FixP) from May through November of 2018. Hepatic biopsies were taken at - 45 ± 17, 21 ± 7, 100 ± 23 and 180 ± 23 days in milk (DIM), representing prepartum, early lactation, early mid-lactation and late mid-lactation. The effects of DIM, feeding strategy (FS), strain and their interactions were analyzed with mixed models using repeated measures. Cows of both strains had similar triglyceride levels, mitochondrial function and carnitine palmitoyltransferase activity in liver during lactation. However, there was an effect of DIM and FS as liver triglyceride was higher for the MaxP strategy at 21 DIM and both mitochondrial function and carnitine palmitoyltransferase activity in liver were lower for the MaxP strategy at 21 DIM. Hepatic mitochondrial function and acetylation levels were affected by the interaction between strain and feeding strategy as both variables were higher for NAH cows in the MaxP strategy. Mid-lactation hepatic gene expression of enzymes related to fatty acid metabolism and nuclear receptors was higher for NZH than NAH cows. This work confirms the association between liver triglyceride, decreased hepatic mitochondrial function and greater mitochondrial acetylation levels in cows with a higher inclusion of pasture and suggests differential adaptative mechanisms between NAH and NZH cows to strategies with varying proportions of grazing in the feeding strategy.


Asunto(s)
Dieta , Suplementos Dietéticos , Femenino , Bovinos , Animales , Dieta/veterinaria , Carnitina O-Palmitoiltransferasa/metabolismo , Lactancia/fisiología , Leche/metabolismo , Triglicéridos/metabolismo
2.
J Dairy Sci ; 105(7): 5723-5737, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35599026

RESUMEN

The objective of this study was to assess hepatic ATP synthesis in Holstein cows of North American and New Zealand origins and the gluconeogenic pathway, one of the pathways with the highest ATP demands in the ruminant liver. Autumn-calving Holstein cows of New Zealand and North American origins were managed in a pasture-based system with supplementation of concentrate that represented approximately 33% of the predicted dry matter intake during 2017, 2018, and 2019, and hepatic biopsies were taken during mid-lactation at 174 ± 23 days in milk. Cows of both strains produced similar levels of solids-corrected milk, and no differences in body condition score were found. Plasma glucose concentrations were higher for cows of New Zealand versus North American origin. Hepatic mitochondrial function evaluated measuring oxygen consumption rates showed that mitochondrial parameters related to ATP synthesis and maximum respiratory rate were increased for cows of New Zealand compared with North American origin. However, hepatic gene expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and pyruvate dehydrogenase kinase was increased in North American compared with New Zealand cows. These results altogether suggest an increased activity of the tricarboxylic cycle in New Zealand cows, leading to increased ATP synthesis, whereas North American cows pull tricarboxylic cycle intermediates toward gluconeogenesis. The fact that this occurs during mid-lactation could account for the increased persistency of North American cows, especially in a pasture-based system. In addition, we observed an augmented mitochondrial density in New Zealand cows, which could be related to feed efficiency mechanisms. In sum, our results contribute to the elucidation of hepatic molecular mechanisms in dairy cows in production systems with higher inclusion of pastures.


Asunto(s)
Gluconeogénesis , Lactancia , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Industria Lechera/métodos , Dieta/veterinaria , Femenino , Expresión Génica , Gluconeogénesis/genética , Lactancia/genética , Leche/metabolismo , Mitocondrias/metabolismo
3.
PLoS One ; 14(3): e0213780, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30870481

RESUMEN

Early lactation is an energy-deming period for dairy cows which may lead to negative energy balance, threatening animal health and consequently productivity. Herein we studied hepatic mitochondrial function in Holstein-Friesian multiparous dairy cows during lactation, under two different feeding strategies. During the first 180 days postpartum the cows were fed a total mixed ration (70% forage: 30% concentrate) ad libitum (non-grazing group, G0) or grazed Festuca arundinacea or Mendicago sativa plus supplementation (grazing group, G1). From 180 to 250 days postpartum, all cows grazed Festuca arundinacea were supplemented with total mixed ration. Mitochondrial function was assessed measuring oxygen consumption rate in liver biopsies revealed that maximum respiratory rate decreased significantly in grazing cows during early lactation, yet was unchanged in non-grazing cows during the lactation curve. While no differences could be found in mitochondrial content or oxidative stress markers, a significant increase in protein lysine acetylation was found in grazing cows during early lactation but not in cows from the non-grazing group. Mitochondrial acetylation positively correlated with liver triglycerides ß-hydroxybutyrate plasma levels, well-known markers of negative energy balance, while a negative correlation was found with the maximum respiratory rate sirtuin 3 levels. To our knowledge this is the first report of mitochondrial function in liver biopsies of dairy cows during lactation. On the whole our results indicate that mitochondrial function is impaired during early lactation in grazing cows that acetylation may account for changes in mitochondrial function in this period. Additionally, our results suggest that feeding total mixed ration during early lactation may be an efficient protective strategy.


Asunto(s)
Conducta Alimentaria , Lactancia , Lisina/química , Mitocondrias Hepáticas/patología , Estrés Oxidativo , Proteínas/química , Acetilación , Animales , Bovinos , Metabolismo Energético , Femenino , Mitocondrias Hepáticas/metabolismo
4.
J Anim Sci ; 96(10): 4431-4443, 2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30032298

RESUMEN

Variations in phenotypic expression of feed efficiency could be associated with differences or inefficiencies in mitochondria function due to its impact on energy expenditure. The aim of this study was to determine hepatic mitochondrial density and function in terms of respiration, gene and protein expression, and enzyme activity of mitochondrial respiratory complex proteins, in steers of divergent residual feed intake (RFI) phenotypes. Hereford steers (n = 111 and n = 122 for year 1 and 2, respectively) were evaluated in postweaning 70 d standard test for RFI. Forty-six steers exhibiting the greatest (n = 9 and 16 for year 1 and 2; high-RFI) and the lowest (n = 9 and 12 for year 1 and 2; low-RFI) RFI values were selected for this study. After the test, steers were managed together until slaughter under grazing conditions until they reached the slaughter body weight. At slaughter, hepatic samples (biopsies) were obtained. Tissue respiration was evaluated using high-resolution respirometry methods. Data were analyzed using a mixed model that included RFI group as fixed effect and slaughter date and year as a random effect using PROC MIXED of SAS. RFI and dry matter intake were different (P < 0.001) between low and high-RFI groups of year 1 and year 2. Basal respiration and maximum respiratory rate were greater (P ≤ 0.04) for low than high-RFI steers when complex II substrates (succinate) were supplied. However, when Complex I substrates (glutamate/malate) were used maximum respiratory capacity tended to be greater (P < 0.09) for low vs. high-RFI steers. Low-RFI steers presented greater mitochondria density markers (greater (P < 0.05) citrate synthase (CS) activity and tended (P ≤ 0.08) to have greater CS mRNA and mtDNA:nDNA ratio) than high-RFI steers. Hepatic expression SDHA, UQCRC1, and CYC1 mRNA was greater (P ≤ 0.02) and expression of NDUFA4, NDUFA13, SDHD, UQCRH, and ATP5E mRNA tended (P ≤ 0.10) to be greater in low than high-RFI steers. Hepatic SDHA protein expression tended (P < 0.08) to be greater while succinate dehydrogenase activity was greater (P = 0.04) and NADH dehydrogenase activity was greater (P = 0.03) for low than high-RFI steers. High-efficiency steers (low-RFI) probably had greater efficiency in hepatic nutrient metabolism, which was strongly associated with greater hepatic mitochondrial density and functioning, mainly of mitochondrial complex II.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Ingestión de Alimentos , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Mitocondrias/enzimología , Animales , Peso Corporal , Bovinos/genética , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Hígado/enzimología , Masculino , Mitocondrias/genética , Oxígeno/metabolismo , Fenotipo , ARN Mensajero/genética
5.
Redox Biol ; 17: 207-212, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29704825

RESUMEN

The aim of this work was to develop a cryopreservation method of small liver biopsies for in situ mitochondrial function assessment. Herein we describe a detailed protocol for tissue collection, cryopreservation, high-resolution respirometry using complex I and II substrates, calculation and interpretation of respiratory parameters. Liver biopsies from cow and rat were sequentially frozen in a medium containing dimethylsulfoxide as cryoprotectant and stored for up to 3 months at -80 °C. Oxygen consumption rate studies of fresh and cryopreserved samples revealed that most respiratory parameters remained unchanged. Additionally, outer mitochondrial membrane integrity was assessed adding cytochrome c, proving that our cryopreservation method does not harm mitochondrial structure. In sum, we present a reliable way to cryopreserve small liver biopsies without affecting mitochondrial function. Our protocol will enable the transport and storage of samples, extending and facilitating mitochondrial function analysis of liver biopsies.


Asunto(s)
Criopreservación , Hígado/metabolismo , Mitocondrias Hepáticas/genética , Consumo de Oxígeno/genética , Animales , Biopsia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/fisiología , Hígado/fisiología , Mitocondrias Hepáticas/fisiología , Membranas Mitocondriales/metabolismo , Consumo de Oxígeno/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...