Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35808407

RESUMEN

This work analyzed the use of Microsoft HoloLens 2 in orthopedic oncological surgeries and compares it to its predecessor (Microsoft HoloLens 1). Specifically, we developed two equivalent applications, one for each device, and evaluated the augmented reality (AR) projection accuracy in an experimental scenario using phantoms based on two patients. We achieved automatic registration between virtual and real worlds using patient-specific surgical guides on each phantom. They contained a small adaptor for a 3D-printed AR marker, the characteristic patterns of which were easily recognized using both Microsoft HoloLens devices. The newest model improved the AR projection accuracy by almost 25%, and both of them yielded an RMSE below 3 mm. After ascertaining the enhancement of the second model in this aspect, we went a step further with Microsoft HoloLens 2 and tested it during the surgical intervention of one of the patients. During this experience, we collected the surgeons' feedback in terms of comfortability, usability, and ergonomics. Our goal was to estimate whether the improved technical features of the newest model facilitate its implementation in actual surgical scenarios. All of the results point to Microsoft HoloLens 2 being better in all the aspects affecting surgical interventions and support its use in future experiences.


Asunto(s)
Realidad Aumentada , Procedimientos Ortopédicos , Cirugía Asistida por Computador , Ergonomía , Humanos , Fantasmas de Imagen , Programas Informáticos , Cirugía Asistida por Computador/métodos
2.
Comput Methods Programs Biomed ; 224: 106991, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35810510

RESUMEN

BACKGROUND AND OBJECTIVE: Sacral nerve stimulation (SNS) is a minimally invasive procedure where an electrode lead is implanted through the sacral foramina to stimulate the nerve modulating colonic and urinary functions. One of the most crucial steps in SNS procedures is the placement of the tined lead close to the sacral nerve. However, needle insertion is very challenging for surgeons. Several x-ray projections are required to interpret the needle position correctly. In many cases, multiple punctures are needed, causing an increase in surgical time and patient's discomfort and pain. In this work we propose and evaluate two different navigation systems to guide electrode placement in SNS surgeries designed to reduce surgical time, minimize patient discomfort and improve surgical outcomes. METHODS: We developed, for the first alternative, an open-source navigation software to guide electrode placement by real-time needle tracking with an optical tracking system (OTS). In the second method, we present a smartphone-based AR application that displays virtual guidance elements directly on the affected area, using a 3D printed reference marker placed on the patient. This guidance facilitates needle insertion with a predefined trajectory. Both techniques were evaluated to determine which one obtained better results than the current surgical procedure. To compare the proposals with the clinical method, we developed an x-ray software tool that calculates a digitally reconstructed radiograph, simulating the fluoroscopy acquisitions during the procedure. Twelve physicians (inexperienced and experienced users) performed needle insertions through several specific targets to evaluate the alternative SNS guidance methods on a realistic patient-based phantom. RESULTS: With each navigation solution, we observed that users took less average time to complete each insertion (36.83 s and 44.43 s for the OTS and AR methods, respectively) and needed fewer average punctures to reach the target (1.23 and 1.96 for the OTS and AR methods respectively) than following the standard clinical method (189.28 s and 3.65 punctures). CONCLUSIONS: To conclude, we have shown two navigation alternatives that could improve surgical outcome by significantly reducing needle insertions, surgical time and patient's pain in SNS procedures. We believe that these solutions are feasible to train surgeons and even replace current SNS clinical procedures.


Asunto(s)
Realidad Aumentada , Cirugía Asistida por Computador , Humanos , Agujas , Dolor , Fantasmas de Imagen , Cirugía Asistida por Computador/métodos , Tomografía Computarizada por Rayos X
3.
Sensors (Basel) ; 21(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34883825

RESUMEN

Patient-specific instruments (PSIs) have become a valuable tool for osteotomy guidance in complex surgical scenarios such as pelvic tumor resection. They provide similar accuracy to surgical navigation systems but are generally more convenient and faster. However, their correct placement can become challenging in some anatomical regions, and it cannot be verified objectively during the intervention. Incorrect installations can result in high deviations from the planned osteotomy, increasing the risk of positive resection margins. In this work, we propose to use augmented reality (AR) to guide and verify PSIs placement. We designed an experiment to assess the accuracy provided by the system using a smartphone and the HoloLens 2 and compared the results with the conventional freehand method. The results showed significant differences, where AR guidance prevented high osteotomy deviations, reducing maximal deviation of 54.03 mm for freehand placements to less than 5 mm with AR guidance. The experiment was performed in two versions of a plastic three-dimensional (3D) printed phantom, one including a silicone layer to simulate tissue, providing more realism. We also studied how differences in shape and location of PSIs affect their accuracy, concluding that those with smaller sizes and a homogeneous target surface are more prone to errors. Our study presents promising results that prove AR's potential to overcome the present limitations of PSIs conveniently and effectively.


Asunto(s)
Realidad Aumentada , Neoplasias Pélvicas , Cirugía Asistida por Computador , Humanos , Imagenología Tridimensional , Pelvis/cirugía , Fantasmas de Imagen
4.
Int J Comput Assist Radiol Surg ; 16(3): 397-406, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33616839

RESUMEN

PURPOSE: 3D-printed patient-specific instruments have become a useful tool to improve accuracy in pelvic tumour resections. However, their correct placement can be challenging in some regions due to the morphology of the bone, so it is essential to be aware of the possible placement errors in each region. In this study, we characterize these errors in common pelvic osteotomies. METHODS: We conducted an experiment with 9 cadaveric specimens, for which we acquired a pre-operative computed tomography scan. Small PSIs were designed for each case following a realistic surgical approach for four regions of the pelvis: iliac crest (C), supra-acetabular (S), ischial (I), and pubic (P). Final surgical placement was based on a post-operative scan. The resulting positions were compared with pre-operative planning, obtaining translations, rotations, and maximum osteotomy deviations in a local reference frame defined based on the bone's morphology. RESULTS: Mean translations and rotations in the direction of the osteotomy plane were as follows: C = 5.3 mm, 6.7°; S = 1.8 mm, 5.1°; I = 1.5 mm, 3.4°; P = 1.8 mm, 3.5°. Mean translations in the remaining axes were below 2 mm. Maximum osteotomy deviations (75% of cases) were below 11.8 mm in C (7.8 mm for half-length), 7.8 mm in S (5.5 mm for half-length), 5.5 mm in I, and 3.7 mm in P. CONCLUSION: We have characterized placement errors for small PSIs in four regions of the pelvis. Our results show high errors in C and S PSIs in the direction of the resection plane's normal, and thus large osteotomy deviations. Deviations in short osteotomies in S, I and P and placement errors in the remaining directions were low. The PSIs used in this study are biocompatible and can be produced with a desktop 3D printer, thus minimizing manufacturing cost.


Asunto(s)
Acetábulo/cirugía , Imagenología Tridimensional/métodos , Osteotomía/métodos , Neoplasias Pélvicas/diagnóstico por imagen , Impresión Tridimensional , Cadáver , Humanos , Pelvis , Periodo Posoperatorio , Periodo Preoperatorio , Valores de Referencia , Reproducibilidad de los Resultados , Cirugía Asistida por Computador/métodos , Tomografía Computarizada por Rayos X
5.
Int J Comput Assist Radiol Surg ; 16(2): 277-287, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33417161

RESUMEN

PURPOSE: Surgical correction of metopic craniosynostosis typically involves open cranial vault remodeling. Accurate translation of the virtual surgical plan into the operating room is challenging due to the lack of tools for intraoperative analysis of the surgical outcome. This study aimed to evaluate the feasibility of using a hand-held 3D photography device for intraoperative evaluation and guidance during cranial vault surgical reconstruction. METHODS: A hand-held structured light scanner was used for intraoperative 3D photography during five craniosynostosis surgeries, obtaining 3D models of skin and bone surfaces before and after the remodeling. The accuracy of this device for 3D modeling and morphology quantification was evaluated using preoperative computed tomography imaging as gold-standard. In addition, the time required for intraoperative 3D photograph acquisition was measured. RESULTS: The average error of intraoperative 3D photography was 0.30 mm. Moreover, the interfrontal angle and the transverse forehead width were accurately measured in the 3D photographs with an average error of 0.72 degrees and 0.62 mm. Surgeon's feedback indicates that this technology can be integrated into the surgical workflow without substantially increasing surgical time. CONCLUSION: Hand-held 3D photography is an accurate technique for objective quantification of intraoperative cranial vault morphology and guidance during metopic craniosynostosis surgical reconstruction. This noninvasive technique does not substantially increase surgical time and does not require exposure to ionizing radiation, presenting a valuable alternative to computed tomography imaging. The proposed methodology can be integrated into the surgical workflow to assist during cranial vault remodeling and ensure optimal surgical outcomes.


Asunto(s)
Craneosinostosis/cirugía , Fotograbar , Procedimientos de Cirugía Plástica/métodos , Cráneo/cirugía , Preescolar , Femenino , Humanos , Imagenología Tridimensional , Lactante , Masculino , Tomografía Computarizada por Rayos X/métodos
6.
Front Oncol ; 11: 741191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35059309

RESUMEN

Adenoid Cystic Carcinoma is a rare and aggressive tumor representing less than 1% of head and neck cancers. This malignancy often arises from the minor salivary glands, being the palate its most common location. Surgical en-bloc resection with clear margins is the primary treatment. However, this location presents a limited line of sight and a high risk of injuries, making the surgical procedure challenging. In this context, technologies such as intraoperative navigation can become an effective tool, reducing morbidity and improving the safety and accuracy of the procedure. Although their use is extended in fields such as neurosurgery, their application in maxillofacial surgery has not been widely evidenced. One reason is the need to rigidly fixate a navigation reference to the patient, which often entails an invasive setup. In this work, we studied three alternative and less invasive setups using optical tracking, 3D printing and augmented reality. We evaluated their precision in a patient-specific phantom, obtaining errors below 1 mm. The optimum setup was finally applied in a clinical case, where the navigation software was used to guide the tumor resection. Points were collected along the surgical margins after resection and compared with the real ones identified in the postoperative CT. Distances of less than 2 mm were obtained in 90% of the samples. Moreover, the navigation provided confidence to the surgeons, who could then undertake a less invasive and more conservative approach. The postoperative CT scans showed adequate resection margins and confirmed that the patient is free of disease after two years of follow-up.

7.
J Vis Exp ; (155)2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31957749

RESUMEN

Augmented reality (AR) has great potential in education, training, and surgical guidance in the medical field. Its combination with three-dimensional (3D) printing (3DP) opens new possibilities in clinical applications. Although these technologies have grown exponentially in recent years, their adoption by physicians is still limited, since they require extensive knowledge of engineering and software development. Therefore, the purpose of this protocol is to describe a step-by-step methodology enabling inexperienced users to create a smartphone app, which combines AR and 3DP for the visualization of anatomical 3D models of patients with a 3D-printed reference marker. The protocol describes how to create 3D virtual models of a patient's anatomy derived from 3D medical images. It then explains how to perform positioning of the 3D models with respect to marker references. Also provided are instructions for how to 3D print the required tools and models. Finally, steps to deploy the app are provided. The protocol is based on free and multi-platform software and can be applied to any medical imaging modality or patient. An alternative approach is described to provide automatic registration between a 3D-printed model created from a patient's anatomy and the projected holograms. As an example, a clinical case of a patient suffering from distal leg sarcoma is provided to illustrate the methodology. It is expected that this protocol will accelerate the adoption of AR and 3DP technologies by medical professionals.


Asunto(s)
Realidad Aumentada , Impresión Tridimensional , Teléfono Inteligente , Humanos , Imagenología Tridimensional , Aplicaciones Móviles , Modelos Anatómicos , Sarcoma/diagnóstico por imagen , Programas Informáticos , Tomografía Computarizada por Rayos X
8.
Sci Rep ; 9(1): 17691, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776390

RESUMEN

Craniosynostosis must often be corrected using surgery, by which the affected bone tissue is remodeled. Nowadays, surgical reconstruction relies mostly on the subjective judgement of the surgeon to best restore normal skull shape, since remodeled bone is manually placed and fixed. Slight variations can compromise the cosmetic outcome. The objective of this study was to describe and evaluate a novel workflow for patient-specific correction of craniosynostosis based on intraoperative navigation and 3D printing. The workflow was followed in five patients with craniosynostosis. Virtual surgical planning was performed, and patient-specific cutting guides and templates were designed and manufactured. These guides and templates were used to control osteotomies and bone remodeling. An intraoperative navigation system based on optical tracking made it possible to follow preoperative virtual planning in the operating room through real-time positioning and 3D visualization. Navigation accuracy was estimated using intraoperative surface scanning as the gold-standard. An average error of 0.62 mm and 0.64 mm was obtained in the remodeled frontal region and supraorbital bar, respectively. Intraoperative navigation is an accurate and reproducible technique for correction of craniosynostosis that enables optimal translation of the preoperative plan to the operating room.


Asunto(s)
Craneosinostosis/cirugía , Osteotomía/métodos , Procedimientos de Cirugía Plástica/métodos , Medicina de Precisión/métodos , Impresión Tridimensional , Cirugía Asistida por Computador/métodos , Flujo de Trabajo , Ingeniería Biomédica/métodos , Remodelación Ósea , Suturas Craneales/diagnóstico por imagen , Craneosinostosis/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional/métodos , Lactante , Periodo Intraoperatorio , Masculino , Cráneo/diagnóstico por imagen , Cráneo/patología , Cráneo/cirugía , Tomografía Computarizada por Rayos X , Interfaz Usuario-Computador
9.
Healthc Technol Lett ; 5(5): 162-166, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30464847

RESUMEN

Augmented reality (AR) can be an interesting technology for clinical scenarios as an alternative to conventional surgical navigation. However, the registration between augmented data and real-world spaces is a limiting factor. In this study, the authors propose a method based on desktop three-dimensional (3D) printing to create patient-specific tools containing a visual pattern that enables automatic registration. This specific tool fits on the patient only in the location it was designed for, avoiding placement errors. This solution has been developed as a software application running on Microsoft HoloLens. The workflow was validated on a 3D printed phantom replicating the anatomy of a patient presenting an extraosseous Ewing's sarcoma, and then tested during the actual surgical intervention. The application allowed physicians to visualise the skin, bone and tumour location overlaid on the phantom and patient. This workflow could be extended to many clinical applications in the surgical field and also for training and simulation, in cases where hard body structures are involved. Although the authors have tested their workflow on AR head mounted display, they believe that a similar approach can be applied to other devices such as tablets or smartphones.

10.
Med Phys ; 44(10): 5061-5069, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28736930

RESUMEN

PURPOSE: Intraoperative electron radiation therapy (IOERT) involves the delivery of a high radiation dose during tumor resection in a shorter time than other radiation techniques, thus improving local control of tumors. However, a linear accelerator device is needed to produce the beam safely. Mobile linear accelerators have been designed as dedicated units that can be moved into the operating room and deliver radiation in situ. Correct and safe dose delivery is a key concern when using mobile accelerators. The applicator is commonly fixed to the patient's bed to ensure that the dose is delivered to the prescribed location, and the mobile accelerator is moved to dock the applicator to the radiation beam output (gantry). In a typical clinical set-up, this task is time-consuming because of safety requirements and the limited degree of freedom of the gantry. The objective of this study was to present a navigation solution based on optical tracking for guidance of docking to improve safety and reduce procedure time. METHOD: We used an optical tracker attached to the mobile linear accelerator to track the prescribed localization of the radiation collimator inside the operating room. Using this information, the integrated navigation system developed computes the movements that the mobile linear accelerator needs to perform to align the applicator and the radiation gantry and warns the physician if docking is unrealizable according to the available degrees of freedom of the mobile linear accelerator. Furthermore, we coded a software application that connects all the necessary functioning elements and provides a user interface for the system calibration and the docking guidance. RESULT: The system could safeguard against the spatial limitations of the operating room, calculate the optimal arrangement of the accelerator and reduce the docking time in computer simulations and experimental setups. CONCLUSIONS: The system could be used to guide docking with any commercial linear accelerator. We believe that the docking navigator we present is a major contribution to IOERT, where docking is critical when attempting to reduce surgical time, ensure patient safety and guarantee that the treatment administered follows the radiation oncologist's prescription.


Asunto(s)
Electrones/uso terapéutico , Marcadores Fiduciales , Fenómenos Ópticos , Aceleradores de Partículas , Humanos , Periodo Intraoperatorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...