Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 30(2): 855-867, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34547467

RESUMEN

Cell-penetrating peptides (CPPs) hold great promise for intracellular delivery of therapeutic proteins. However, endosomal entrapment of transduced cargo is a major bottleneck hampering their successful application. While developing a transducible zinc finger protein-based artificial transcription factor targeting the expression of endothelin receptor A, we identified interaction between the CPP and the endosomal membrane or endosomal entanglement as a main culprit for endosomal entrapment. To achieve endosomal disentanglement, we utilized endosome-resident proteases to sever the artificial transcription factor from its CPP upon arrival inside the endosome. Using this approach, we greatly enhanced the correct subcellular localization of the disentangled artificial transcription factor, significantly increasing its biological activity and distribution in vivo. With rational engineering of proteolytic sensitivity, we propose a new design principle for transducible therapeutic proteins, helping CPPs attain their full potential as delivery vectors for therapeutic proteins.


Asunto(s)
Péptidos de Penetración Celular , Receptores de Endotelina , Péptidos de Penetración Celular/metabolismo , Endosomas/metabolismo , Receptores de Endotelina/metabolismo , Factores de Transcripción/metabolismo
2.
Nucleic Acids Res ; 39(21): 9250-61, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21859751

RESUMEN

Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3' → 5' polarity in the presence of Mn(2+) and low inorganic phosphate (Pi) concentration, or to extend a 3'-OH end in the presence dNDP · Mn(2+). Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3'-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Bacillus subtilis/enzimología , Enzimas de Restricción del ADN/metabolismo , Nucleótidos de Desoxiadenina/metabolismo , Escherichia coli/enzimología , Manganeso/química , Rec A Recombinasas/metabolismo
3.
J Mol Biol ; 410(1): 39-49, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21600217

RESUMEN

The Bacillus subtilis RecU protein has two activities: to recognize, distort, and cleave four-stranded recombination intermediates and to modulate RecA activities. The RecU structure shows a mushroom-like appearance, with a cap and a stalk region. The RuvB interaction and the catalytic residues are located in the cap region of dimeric RecU. We report here that the stalk region is essential not only for RecA modulation but also for Holliday junction (HJ) recognition. Two recU mutants, which map in the stalk region, were isolated and characterized. In vivo, a RecU variant with a Phe81-to-Ala substitution (F81A) was as sensitive to DNA-damaging agents as a null recU strain, and a similar substitution at tyrosine 80 (Y80A) showed an intermediate phenotype. RecUY80A and RecUF81A poorly recognize and distort HJs. RecUY80A cleaves HJs with low efficiency, and RuvB modulates cleavage. At high concentrations, RecUF81A binds to HJs but fails to cleave them. Unlike wild-type RecU, RecUY80A and RecUF81A do not inhibit RecA dATPase and strand-exchange activities. The RecU stalk region is involved in RecA interaction, but once an HJ is bound, RecU fails to modulate RecA activities. Our biochemical study provides a mechanistic basis for the connections between these two mutually exclusive stages (i.e., RecA modulation and HJ resolution) of the recombination reaction.


Asunto(s)
Bacillus subtilis/genética , ADN Bacteriano/genética , ADN Cruciforme/genética , Resolvasas de Unión Holliday/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , ADN Bacteriano/metabolismo , ADN Cruciforme/metabolismo , Resolvasas de Unión Holliday/metabolismo , Datos de Secuencia Molecular , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Recombinación Genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA