Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Space Sci Rev ; 217(3): 48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776548

RESUMEN

NASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.

2.
Sci Rep ; 9(1): 7852, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31110203

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

3.
Sci Rep ; 8(1): 16706, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420604

RESUMEN

The hyperarid core of the Atacama Desert, the driest and oldest desert on Earth, has experienced a number of highly unusual rain events over the past three years, resulting in the formation of previously unrecorded hypersaline lagoons, which have lasted several months. We have systematically analyzed the evolution of the lagoons to provide quantitative field constraints of large-scale impacts of the rains on the local microbial communities. Here we show that the sudden and massive input of water in regions that have remained hyperarid for millions of years is harmful for most of the surface soil microbial species, which are exquisitely adapted to survive with meager amounts of liquid water, and quickly perish from osmotic shock when water becomes suddenly abundant. We found that only a handful of bacteria, remarkably a newly identified species of Halomonas, remain metabolically active and are still able to reproduce in the lagoons, while no archaea or eukaryotes were identified. Our results show that the already low microbial biodiversity of extreme arid regions greatly diminishes when water is supplied quickly and in great volumes. We conclude placing our findings in the context of the astrobiological exploration of Mars, a hyperarid planet that experienced catastrophic floodings in ancient times.


Asunto(s)
Lluvia , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Clima Desértico , Microbiota , Microbiología del Suelo
4.
Geobiology ; 12(1): 34-47, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24237661

RESUMEN

The Iberian Pyrite Belt (IPB, southwest of Spain), the largest known massive sulfide deposit, fuels a rich chemolithotrophic microbial community in the Río Tinto area. However, the geomicrobiology of its deep subsurface is still unexplored. Herein, we report on the geochemistry and prokaryotic diversity in the subsurface (down to a depth of 166 m) of the Iberian Pyritic belt using an array of geochemical and complementary molecular ecology techniques. Using an antibody microarray, we detected polymeric biomarkers (lipoteichoic acids and peptidoglycan) from Gram-positive bacteria throughout the borehole. DNA microarray hybridization confirmed the presence of members of methane oxidizers, sulfate-reducers, metal and sulfur oxidizers, and methanogenic Euryarchaeota. DNA sequences from denitrifying and hydrogenotrophic bacteria were also identified. FISH hybridization revealed live bacterial clusters associated with microniches on mineral surfaces. These results, together with measures of the geochemical parameters in the borehole, allowed us to create a preliminary scheme of the biogeochemical processes that could be operating in the deep subsurface of the Iberian Pyrite Belt, including microbial metabolisms such as sulfate reduction, methanogenesis and anaerobic methane oxidation.


Asunto(s)
Bacterias/clasificación , Biota , Euryarchaeota/clasificación , Metano/metabolismo , Microbiología del Suelo , Suelo/química , Sulfatos/metabolismo , Bacterias/genética , Bacterias/inmunología , Bacterias/metabolismo , Euryarchaeota/genética , Euryarchaeota/inmunología , Euryarchaeota/metabolismo , Hibridación Fluorescente in Situ , Análisis por Micromatrices , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Análisis por Matrices de Proteínas , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...