Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703344

RESUMEN

Major depressive disorder (MDD) is a severe disorder that causes enormous loss of quality of life, and among the factors underlying MDD is stress in maternal deprivation (MD). In addition, classic pharmacotherapy has presented severe adverse effects. Centella asiatica (C. asiatica) demonstrates a potential neuroprotective effect but has not yet been evaluated in MD models. This study aimed to evaluate the effect of C. asiatica extract and the active compound madecassic acid on possible depressive-like behavior, inflammation, and oxidative stress in the hippocampus and serum of young rats submitted to MD in the first days of life. Rats (after the first day of birth) were separated from the mother for 3 h a day for 10 days. When adults, these animals were divided into groups and submitted to treatment for 14 days. After subjecting the animals to protocols of locomotor activity in the open field and behavioral despair in the forced swimming test, researchers then euthanized the animals. The hippocampus and serum were collected and analyzed for the inflammatory cytokines and oxidative markers. The C. asiatica extract and active compound reversed or reduced depressive-like behaviors, inflammation in the hippocampus, and oxidative stress in serum and hippocampus. These results suggest that C. asiatica and madecassic acid have potential antidepressant action, at least partially, through anti-inflammatory and antioxidant profiles.

2.
J Affect Disord ; 355: 283-289, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479509

RESUMEN

BACKGROUND: Older people are the fastest-growing age group, with the highest risk of cognitive impairment. This study assessed the prevalence and associated factors with cognitive impairment in community-dwelling older people. METHODS: Older people were interviewed and accomplished through sociodemographic and health questionnaires. The quantitative variables were described by mean and standard deviation or median and interquartile range. The significance level adopted was 5 % (p < 0.05). The association between the quantitative variables was evaluated using the Pearson or Spearman correlation coefficients. RESULTS: The research population comprised 165 long-lived adults aged ≥80. The youngest one was 80, and the oldest one was 94 years old. The participants were 84.8 ± 3.6 years old, female (63 %) with a mean of education of 2.9 ± 1.8 years. A poor performance in the Mini-Mental State Examination (MMSE) was found in 58 (35.2 %) individuals when adjusted for educational level. After adjustment for confounding factors, body mass index (BMI) (p = 0.09), total older adults' income (up to 1 minimum wage [mw], p = 0.023; over 1 to 2 mw, p = 0.023), functional disability (Moderate dependence 75 %, p = 0.038; Moderate dependence 50 %, p = 0.081; Moderate dependence 25 %, p = 0.054), and the anxiety scale (p = 0.032), remained associated with cognitive impairment. CONCLUSIONS: This study showed that BMI, total older adults' income, functional disability, and anxiety are related to cognitive impairment in long-lived adults. This study has some limitations, such as the fact that it is a cross-sectional study, the reduced number of individuals, and the fact that there were no comparisons among different ages and populations.


Asunto(s)
Disfunción Cognitiva , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Prevalencia , Estudios Transversales , Disfunción Cognitiva/psicología , Vida Independiente/psicología , Escolaridad
3.
Artículo en Inglés | MEDLINE | ID: mdl-37702162

RESUMEN

INTRODUCTION: Foods rich in flavonoids are associated with a reduced risk of various chronic diseases, including Alzheimer's disease (AD). In fact, growing evidence suggests that consuming flavonoid-rich foods can beneficially affect normal cognitive function. Animal models have shown that many flavonoids prevent the development of AD-like pathology and improve cognitive deficits. RESULT: Flavonoid-rich foods, such as green tea and blueberries, must exert their effect through the direct interaction of absorbed flavonoids and their metabolites with cellular and molecular targets. CONCLUSION: Based on the most recent scientific literature, this review article critically examines the therapeutic role of dietary flavonoids in ameliorating and preventing the progression of AD and focuses on the role of the BDNF signaling pathway in the neuroprotective effects of flavonoids.

4.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569815

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia in older adults, having a significant global burden and increasing prevalence. Current treatments for AD only provide symptomatic relief and do not cure the disease. Physical activity has been extensively studied as a potential preventive measure against cognitive decline and AD. Recent research has identified a hormone called irisin, which is produced during exercise, that has shown promising effects on cognitive function. Irisin acts on the brain by promoting neuroprotection by enhancing the growth and survival of neurons. It also plays a role in metabolism, energy regulation, and glucose homeostasis. Furthermore, irisin has been found to modulate autophagy, which is a cellular process involved in the clearance of protein aggregates, which are a hallmark of AD. Additionally, irisin has been shown to protect against cell death, apoptosis, oxidative stress, and neuroinflammation, all of which are implicated in AD pathogenesis. However, further research is needed to fully understand the mechanisms and therapeutic potential of irisin in AD. Despite the current gaps in knowledge, irisin holds promise as a potential therapeutic target for slowing cognitive decline and improving quality of life in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Saludable , Anciano , Humanos , Enfermedad de Alzheimer/metabolismo , Fibronectinas/metabolismo , Neuroprotección , Calidad de Vida
5.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36724248

RESUMEN

AIMS: The protective effects of Bacillus amyloliquefaciens(CCT7935), Bacillus subtilis(CCT7935), Bacillus licheniformis (CCT 7836), and Bacillus coagulans (CCT 0199) against lipopolysaccharide (LPS)-induced intestinal inflammation were investigated. METHODS AND RESULTS: Male Swiss mice were assigned into six groups: control group, LPS group, LPS + B. subtilis (CCT7935) group, LPS +   B. licheniformis (CCT 7836) group, LPS +   B. amyloliquefaciens (CCT7935) group, and LPS   + B. coagulans (CCT 0199) group. Each mouse of the groups Bacillus received 1 × 109 colony-forming units of Bacillus once daily by oral gavage during 30 days. Twenty-four hours after the last dose of Bacillus, all groups, except the control group, were intraperitoneally injected with LPS in the single dose of 15 mg kg-1. The mice were euthanized 24 h after the LPS administration. Histological alterations, myeloperoxidase activity, and nitrite levels were analyzed in the gut of mice and the inflammatory cytokines were analyzed in the gut and in the blood. The results demonstrate that the mice challenged with LPS presented the villi shortened and damaged, which were significantly protected by B. coagulans and B. amyloliquefaciens. Furthermore, all Bacillus tested were effective in preventing against the increase of myeloperoxidase activity, while B. amyloliquefaciens and B. subtilis prevented the increase of nitrite and IL-1ß levels in the gut of mice induced with LPS was decreased only B. subtilis. LPS also elevated the IL-1 ß, IL-6, and IL-10 levels in the blood, and these alterations were significantly suppressed by Bacillus, especially by B. subtilis. CONCLUSIONS: The study suggests that the Bacillus investigated in this study might be effective therapeutic agents for preventing intestinal inflammation, because they decrease the inflammatory process an protect against tissue damage.


Asunto(s)
Bacillus , Probióticos , Animales , Ratones , Masculino , Lipopolisacáridos , Peroxidasa , Nitritos , Probióticos/farmacología , Inflamación/inducido químicamente , Inflamación/prevención & control
6.
J Photochem Photobiol B ; 239: 112647, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36634432

RESUMEN

UV-A radiation affects skin homeostasis by promoting oxidative distress. Endogenous photosensitizers in the dermis and epidermis of human skin absorb UV-A radiation forming excited states (singlet and triplet) and reactive oxygen species (ROS) producing oxidized compounds that trigger biological responses. The activation of NF-kB induces the expression of pro-inflammatory cytokines and can intensify the generation of ROS. However, there is no studies evaluating the cross talks between inflammatory stimulus and UV-A exposure on the levels of redox misbalance and inflammation. In here, we evaluated the effects of UV-A exposure on J774 macrophage cells previously challenged with LPS in terms of oxidative distress, release of pro-inflammatory cytokines, and activation of regulated cell death pathways. Our results showed that LPS potentiates the dose-dependent UV-A-induced oxidative distress and cytokine release, in addition to amplifying the regulated (autophagy and apoptosis) and non-regulated (necrosis) mechanisms of cell death, indicating that a previous inflammatory stimulus potentiates UV-A-induced cell damage. We discuss these results in terms of the current-available skin care strategies.


Asunto(s)
Lipopolisacáridos , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Piel/efectos de la radiación , Citocinas/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-36702452

RESUMEN

An association with circadian clock function and pathophysiology of aging, major depressive disorder (MDD), and Alzheimer's disease (AD) is well established and has been proposed as a factor in the development of these diseases. Depression and changes in circadian rhythm have been increasingly suggested as the two primary overlapping and interpenetrating changes that occur with aging. The relationship between AD and depression in late life is not completely understood and probably is complex. Patients with major depression or AD suffer from disturbed sleep/wake cycles and altered rhythms in daily activities. Although classical monoaminergic hypotheses are traditionally proposed to explain the pathophysiology of MDD, several clinical and preclinical studies have reported a strong association between circadian rhythm and mood regulation. In addition, a large body of evidence supports an association between disruption of circadian rhythm and AD. Some clock genes are dysregulated in rodent models of depression. If aging, AD, and MDD share a common biological basis in pathophysiology, common therapeutic tools could be investigated for their prevention and treatment. Nitro-oxidative stress (NOS), for example, plays a fundamental role in aging, as well as in the pathogenesis of AD and MDD and is associated with circadian clock disturbances. Thus, development of therapeutic possibilities with these NOS-related conditions is advisable. This review describes recent findings that link disrupted circadian clocks to aging, MDD, and AD and summarizes the experimental evidence that supports connections between the circadian clock and molecular pathologic factors as shared common pathophysiological mechanisms underlying aging, AD, and MDD.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Humanos , Ritmo Circadiano/fisiología , Encéfalo
8.
Metab Brain Dis ; 38(4): 1155-1166, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36689104

RESUMEN

Vitamin D3 deficiency is associated with an increased risk of dementia. An association between vitamin D3 deficiency and subjective cognitive complaints in geriatric patients has been previously reported. This study aimed to evaluate the effects of two doses of vitamin D3 on spatial memory (using the Radial Maze) and cytokine levels [tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-10 (IL-10)] on 2-, 6-, 13-, 22-, and 31-month-old male Wistar rats. Animals were supplemented with vitamin D3 at doses of 42 IU/kg and 420 IU/kg for 21 days. A radial maze test was performed to evaluate spatial memory. After the behavioral test, the frontal cortex and hippocampus were dissected for enzyme immunoassay analyses to measure the cytokine levels (TNFα, IL-1ß, IL-6, and IL-10). Our results showed that vitamin D3 supplementation reversed spatial memory impairment at the supplemented doses (42 and 420 IU/kg) in 6-, 13-, and 22-month-old animals and at a dose of 420 IU/kg in 31-month-old animals. The lower dose (42 IU/kg) regulates both pro- and anti-inflammatory cytokines mainly in the frontal cortex. Our results suggest that vitamin D3 has a modulatory action on pro- and anti-inflammatory cytokines, since older animals showed increased cytokine levels compared to 2-month-old animals, and that vitamin D3 may exert an immunomodulatory effect on aging.


Asunto(s)
Colecalciferol , Deficiencia de Vitamina D , Ratas , Masculino , Animales , Colecalciferol/farmacología , Colecalciferol/uso terapéutico , Citocinas , Interleucina-10 , Ratas Wistar , Interleucina-6 , Memoria Espacial , Factor de Necrosis Tumoral alfa , Antiinflamatorios
9.
Exp Gerontol ; 166: 111873, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35760268

RESUMEN

INTRODUCTION: The consumption of soft drinks has increased considerably in recent decades, mainly cola soft drinks. Excessive consumption of cola-based soft drinks is associated with several diseases and cognitive decline, particularly memory impairment. Furthermore, diets with high sugar can promote insulin resistance, metabolic syndrome, and dyslipidemia. AIM: Thus, the present study aimed to evaluate the effect of cola soft drink intake on behavioral alterations and oxidative damage in 2-, 8- and 14- month-old male Wistar rats. METHODS: The soft drink groups drank soft drink and/or water ad libitum during 67 days, the control groups ingested only water. Radial-arm maze and Y-maze were used to evaluate spatial memory, open-field to evaluate the habituation memory, and inhibitory avoidance to evaluate aversive memory. The behavioral tests started at the day 57 and finished at day 67 of treatment. At 68th day, the rats were killed; frontal cortex and hippocampus were dissected to the analysis of antioxidants enzymes catalase (CAT) and superoxide dismutase (SOD); and the oxidative markers thiobarbituric acid reactive substances (TBARS) and dichloro-dihydro-fluorescein diacetate (DCFH) were measured in the hippocampus. RESULTS AND DISCUSSION: The cola-based soft drink intake caused memory impairment in the radial-arm maze, Y-maze task, and open-field in the 2- and 8-month-old rat, but not in the 14-month-old. There were no difference among groups in the inhibitory avoidance test. In the frontal cortex, soft drink intake reduced CAT activity in the 8-month-old rats and SOD activity in the 8- and 14-month-old rats. In the hippocampus, the soft drink increased CAT activity in 2- and 8-month-old rats, increased DCFH levels at all ages, and increased TBARS levels in 2-month-rats. Therefore, the results show that long-term soft drink intake leads to memory impairment and oxidative stress. The younger seems to be more susceptible to the soft drink alterations on behavior; however, soft drink caused alterations in the oxidative system at all ages evaluated.


Asunto(s)
Trastornos de la Memoria , Estrés Oxidativo , Animales , Antioxidantes/farmacología , Bebidas Gaseosas/efectos adversos , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Agua/metabolismo , Agua/farmacología
10.
Cells ; 10(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34685563

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Most AD patients develop the disease in late life, named late onset AD (LOAD). Currently, the most recognized explanation for AD pathology is the amyloid cascade hypothesis. It is assumed that amyloid beta (Aß) aggregation and deposition are critical pathogenic processes in AD, leading to the formation of amyloid plaques, as well as neurofibrillary tangles, neuronal cell death, synaptic degeneration, and dementia. In LOAD, the causes of Aß accumulation and neuronal loss are not completely clear. Importantly, the blood-brain barrier (BBB) disruption seems to present an essential role in the induction of neuroinflammation and consequent AD development. In addition, we propose that the systemic inflammation triggered by conditions like metabolic diseases or infections are causative factors of BBB disruption, coexistent inflammatory cascade and, ultimately, the neurodegeneration observed in AD. In this regard, the use of anti-inflammatory molecules could be an interesting strategy to treat, delay or even halt AD onset and progression. Herein, we review the inflammatory cascade and underlying mechanisms involved in AD pathogenesis and revise the anti-inflammatory effects of compounds as emerging therapeutic drugs against AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Inflamación/fisiopatología , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos
11.
Mater Sci Eng C Mater Biol Appl ; 120: 111392, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545808

RESUMEN

In this study, we performed two experiments. In the first experiment, the objective was to link gold nanoparticles (GNPs) with sodium diclofenac and/or soy lecithin and to determine their concentration in tissues and their toxicity using hepatic and renal analyzes in mice to evaluate their safety as therapeutic agents in the subsequent treatment of obesity. In the second experiment, we evaluated the effect of GNPs on inflammatory and biochemical parameters in obese mice. In the first experiment, we synthesized and characterized 18 nm GNPs that were administered intraperitoneally in isolation or in association with sodium diclofenac and/or soy lecithin in mice once daily for 1 or 14 days. Twenty-four hours after the single or final administration, the animals were euthanized, following which the tissues were removed for evaluating the concentration of GNPs, and serum samples were collected for hepatic and renal analysis. Hepatic damage was evaluated based on the levels of alanine aminotransferase (ALT), whereas renal damage was evaluated based on creatinine levels. A higher concentration of GNPs was detected in the tissues upon administration for 14 days, and there were no signs of hepatic or renal damage. In the second experiment, the mice were used as animal models of obesity and were fed a high-fat diet (obese group) and control diet (control group). After eight weeks of high-fat diet administration, the mice were treated with saline or with GNPs (average size of 18 nm) at a concentration of 70 mg/L (70 mg/kg) once a day, for 14 days, for 10 weeks. Body weight and food intake were measured frequently. After the experiment ended, the animals were euthanized, serum samples were collected for glucose and lipid profile analysis, the mesenteric fat content was weighed, and the brains were removed for inflammatory and biochemical analysis. In obese mice, although GNP administration did not reduce body and mesenteric fat weight, it reduced food intake. The glucose levels were reversed upon administration of GNPs, whereas the lipid profile was not altered in any of the groups. GNPs exerted a beneficial effect on inflammation and oxidative stress parameters, without reverting mitochondrial dysfunction. Our results indicate that the intraperitoneal administration of GNPs for 14 days results in a significant GNP concentration in adipose tissues, which could be an interesting finding for the treatment of inflammation associated with obesity. Based on the efficacy of GNPs in reducing dietary intake, inflammation, and oxidative stress, they can be considered potential alternative agents for the treatment of obesity.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Encéfalo , Oro/metabolismo , Hígado/metabolismo , Nanopartículas del Metal/toxicidad , Ratones , Obesidad/tratamiento farmacológico , Estrés Oxidativo
12.
Metab Brain Dis ; 36(2): 213-224, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33219893

RESUMEN

The present study aimed to evaluate the effect of folic acid treatment in an animal model of aging induced by D-galactose (D-gal). For this propose, adult male Wistar rats received D-gal intraperitoneally (100 mg/kg) and/or folic acid orally (5 mg/kg, 10 mg/kg or 50 mg/kg) for 8 weeks. D-gal caused habituation memory impairment, and folic acid (10 mg/kg and 50 mg/kg) reversed this effect. However, folic acid 50 mg/kg per se caused habituation memory impairment. D-gal increased the lipid peroxidation and oxidative damage to proteins in the prefrontal cortex and hippocampus from rats. Folic acid (5 mg/kg, 10 mg/kg, or 50 mg/kg) partially reversed the oxidative damage to lipids in the hippocampus, but not in the prefrontal cortex, and reversed protein oxidative damage in the prefrontal cortex and hippocampus. D-gal induced synaptophysin and BCL-2 decrease in the hippocampus and phosphorylated tau increase in the prefrontal cortex. Folic acid was able to reverse these D-gal-related alterations in the protein content. The present study shows folic acid supplementation as an alternative during the aging to prevent cognitive impairment and brain alterations that can cause neurodegenerative diseases. However, additional studies are necessary to elucidate the effect of folic acid in aging.


Asunto(s)
Envejecimiento/metabolismo , Ácido Fólico/farmacología , Habituación Psicofisiológica/efectos de los fármacos , Trastornos de la Memoria/prevención & control , Estrés Oxidativo/efectos de los fármacos , Animales , Galactosa , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Memoria/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar
13.
J Gerontol A Biol Sci Med Sci ; 76(6): 991-995, 2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-33249457

RESUMEN

Folic acid (FA) supplementation is important during pregnancy to avoid malformations in the offspring. However, it is unknown if it can affect the offspring throughout their lives. To evaluate the offspring, female mother rats (dams) were separated into 5 groups: Four groups received the AIN-93 diet, divided into control and FA (5, 10, and 50 mg/kg), and an additional group received a FA-deficient diet, and the diet was performed during pregnancy and lactation. We evaluated the female offspring of these dams (at 2 and 18 months old). The aged offspring fed with FA-deficient diet presented habituation, spatial and aversive memory impairment and the FA maternal supplementation prevented this. The natural aging caused an increase in the TNF-α and IL-1ß levels in the hippocampus from 18-month-old offspring. FA maternal supplementation was able to prevent the increase of these cytokines. IL-4 levels decreased in the prefrontal cortex from aged control rats and FA prevented it. FA deficiency decreased the levels of IL-4 in the hippocampus of the young offspring. In addition, natural aging and FA deficiency decreased brain-derived neurotrophic factor levels in the hippocampus and nerve growth factor levels in the prefrontal cortex and FA supplementation prevented it. Thus, the present study shows for the first time the effect of FA maternal supplementation on memory, cytokines, and neurotrophins in the aged offspring.


Asunto(s)
Suplementos Dietéticos , Ácido Fólico/uso terapéutico , Inflamación/prevención & control , Trastornos de la Memoria/prevención & control , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Envejecimiento/efectos de los fármacos , Animales , Femenino , Deficiencia de Ácido Fólico/complicaciones , Hipocampo/metabolismo , Inflamación/etiología , Trastornos de la Memoria/etiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Wistar
14.
Metab Brain Dis ; 34(2): 565-573, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30635861

RESUMEN

The aim of this study was to assess inflammatory parameters, oxidative stress and energy metabolism in the hypothalamus of diet-induced obese mice. Male Swiss mice were divided into two study groups: control group and obese group. The animals in the control group were fed a diet with adequate amounts of macronutrients (normal-lipid diet), whereas the animals in the obese group were fed a high-fat diet to induce obesity. Obesity induction lasted 10 weeks, at the end of this period the disease model was validated in animals. The animals in the obese group had higher calorie consumption, higher body weight and higher weight of mesenteric fat compared to control group. Obesity showed an increase in levels of interleukin 1ß and decreased levels of interleukin 10 in the hypothalamus. Furthermore, increased lipid peroxidation and protein carbonylation, and decreased level of glutathione in the hypothalamus of obese animals. However, there was no statistically significant difference in the activity of antioxidant enzymes, superoxide dismutase and catalase. The obese group had lower activity of complex I, II and IV of the mitochondrial respiratory chain, as well as lower activity of creatine kinase in the hypothalamus as compared to the control group. Thus, the results from this study showed changes in inflammatory markers, and dysregulation of metabolic enzymes in the pathophysiology of obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Obesidad/metabolismo , Animales , Antioxidantes/farmacología , Biomarcadores/metabolismo , Ingestión de Energía/efectos de los fármacos , Inflamación/metabolismo , Masculino , Ratones , Neuroquímica/métodos , Estrés Oxidativo/efectos de los fármacos
15.
Neurochem Res ; 44(4): 787-795, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30610653

RESUMEN

Caffeine is a bioactive compound worldwide consumed with effect into the brain. Part of its action in reducing incidence or delaying Alzheimer's and Parkinson's diseases symptoms in human is credited to the adenosine receptors properties. However, the impact of caffeine consumption during aging on survival of brain cells remains debatable. This work, we investigated the effect of low-dose of caffeine on the ectonucleotidase activities, adenosine receptors content, and paying particular attention to its pro-survival effect during aging. Male young adult and aged Swiss mice drank water or caffeine (0.3 g/L) ad libitum for 4 weeks. The results showed that long-term caffeine treatment did not unchanged ATP, ADP or AMP hydrolysis in hippocampus when compared to the mice drank water. Nevertheless, the ATP/ADP hydrolysis ratio was higher in young adult (3:1) compared to the aged (1:1) animals regardless of treatment. The content of A1 receptors did not change in any groups of mice, but the content of A2A receptors was reduced in hippocampus of mice that consumed caffeine. Moreover, the cell viability results indicated that aged mice not only had increased pyknotic neurons in the hippocampus but also had reduced damage after caffeine treatment. Overall, these findings indicate a potential neuroprotective effect of caffeine during aging through the adenosinergic system.


Asunto(s)
Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Cafeína/administración & dosificación , Neuroprotección/efectos de los fármacos , Receptor de Adenosina A2A/metabolismo , Antagonistas del Receptor de Adenosina A2/administración & dosificación , Envejecimiento/patología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Neuroprotección/fisiología
16.
Mol Neurobiol ; 56(1): 513-524, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29728888

RESUMEN

This study evaluated the effects of omega-3 on inflammation, oxidative stress, and energy metabolism parameters in the brain of mice subjected to high-fat diet-induced obesity model. Body weight and visceral fat weight were evaluated as well. Male Swiss mice were divided into control (purified low-fat diet) and obese (purified high-fat diet). After 6 weeks, the groups were divided into control + saline, control + omega-3, obese + saline, and obese + OMEGA-3. Fish oil (400 mg/kg/day) or saline solution was administrated orally, during 4 weeks. When the experiment completed 10 weeks, the animals were euthanized and the brain and visceral fat were removed. The brain structures (hypothalamus, hippocampus, prefrontal cortex, and striatum) were isolated. Treatment with omega-3 had no effect on body weight, but reduced the visceral fat. Obese animals showed increased inflammation, increased oxidative damage, decreased antioxidant enzymes activity and levels, changes in the Krebs cycle enzyme activities, and inhibition of mitochondrial respiratory chain complexes in the brain structures. Omega-3 treatment partially reversed the changes in the inflammatory and in the oxidative damage parameters and attenuated the alterations in the antioxidant defense and in the energy metabolism (Krebs cycle and mitochondrial respiratory chain). Omega-3 had a beneficial effect on the brain of obese animals, as it partially reversed the changes caused by the consumption of a high-fat diet and consequent obesity. Our results support studies that indicate omega-3 may contribute to obesity treatment.


Asunto(s)
Encéfalo/patología , Ácidos Grasos Omega-3/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/patología , Animales , Antioxidantes/farmacología , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Transporte de Electrón/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Inflamación/patología , Grasa Intraabdominal/patología , Masculino , Ratones , Ratones Obesos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Obesidad/inducido químicamente , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
17.
Mol Neurobiol ; 56(4): 2606-2617, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30051350

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease which is characterized by progressive memory loss, the accumulation of ß-amyloid peptide (Aß) (mainly Aß1-42), and more recently, by neuroinflammation, which has been highlighted as playing a central role in the development and progress of AD. This study utilized 100-day-old Balb/c mice for the induction of an AD-like dementia model. The animals were administered with Aß1-42 oligomers (400 pmol/site) or artificial cerebrospinal fluid (ACSF) into the left cerebral ventricle. Twenty-four hours after intracerebroventricular administration, the animals were treated with minocycline (50 mg/kg, via oral gavage) for 17 days. The animals' locomotion was evaluated using the open-field test. The spatial memory was tested using the Y-maze, and the aversive memory was evaluated using the inhibitory avoidance task. Treatment with minocycline was shown to improve both spatial and aversive memories in mice that were submitted to the dementia model. In addition, minocycline reduced the levels of Aß and microglial activation in the animals that received the administration of Aß1-42 oligomers. Moreover, the results suggest that the decrease in microglial activation occurred because of a reduction in the levels of toll-like receptors 2 (TLR2) content, and its adapter protein MyD88, as well as a reduction in the levels of the protein NLRP3, which is indispensable in the assembly of inflammasome. These observations were evaluated via immunohistochemistry and confirmed using the Western blot analysis. Treatment with minocycline had no effect in preventing apoptotic morphologic alterations of the neurons. Thus, the anti-inflammatory effect of minocycline involves TLR2 receptors and NLRP3, besides being beneficial by ameliorating memory impairments. Graphical Abstract.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/administración & dosificación , Péptidos beta-Amiloides/toxicidad , Minociclina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Multimerización de Proteína , Animales , Supervivencia Celular/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones Endogámicos BALB C , Factor 88 de Diferenciación Mieloide/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Receptor Toll-Like 2/metabolismo
18.
Exp Gerontol ; 113: 209-217, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30304709

RESUMEN

Aging is a complex biological process. Epigenetic alterations have been related to both aging and memory decline. Included amongst these alterations is histone acetylation, which may play a crucial role in aging. Thus, the aims of the present study were to standardize the animal model of d-galactose (d-gal), and to evaluate the effects caused by sodium butyrate (SB), which is a histone deacetylase inhibitor on memory, the modulation of histone deacetylases (HDACs), and also DNA damage in 2, 6 or 16-month-old Wistar rats which were subjected to administrations of d-gal. To help choose the best dose of d-gal for the induction of the aging model, we performed a dose-response curve (100, 200 or 300 mg/kg). d-Gal was administered orally to the 2-month-old rats for a period of 30 days. After this, d-gal (200 mg/kg) or water were administered to the 2, 6 or 16-month-old rats for a period of 30 days. On the 24th day, treatment was started with SB (600 mg/kg) intraperitoneally, for a period of 7 days. SB was able to reverse the damage to habituation memory caused by d-gal in the 2 and 6-month-old rats, but was unable to reverse the damage in the 16 month-old animals. In addition, SB was able to reverse the damage caused by natural aging in the 16-month-old animals. In the inhibitory avoidance task, SB improved the damage caused by d-gal in the 2, 6 and 16-month-old animals and had the same result against the effects of natural aging in the 16-month-old rats. Moreover, d-gal caused an increase in the level of HDACs activity in the 16-month-old animals, and SB was able to reverse this effect in the frontal cortex and hippocampus. The 16-month-old animals showed an increase in the frequency of DNA damage in peripheral blood, and SB was able to reduce this damage. Moreover, d-gal caused an increase in the index and frequency of DNA damage in the 2 and 6-month-old animals, and treatment with SB was able to prevent this damage. Thus, the present study showed the protective effects of SB on the memory of naturally aged and d-gal induced aging in rats. Therefore, the present study shows new findings for the use of SB in aging.


Asunto(s)
Envejecimiento/efectos de los fármacos , Ácido Butírico/farmacología , Galactosa/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Memoria/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Ratas Wistar
19.
J Toxicol Environ Health A ; 80(13-15): 621-629, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28524728

RESUMEN

Studies on caffeine consumption have shown a negative correlation with development of some diseases with subsequent beneficial manifestations. Our aim was to assess the effects of caffeine on peripheral blood and neural tissue DNA in young adult and aged mice. Male Swiss mice (age 2-3 or 16-18 months, respectively) were treated with a caffeine solution (0.3 g/l) for 4 weeks, while controls received water. After the treatments, blood and hippocampal cells (for a comet assay) and femurs (for a micronucleus [MN] test) were collected. The comet assay of peripheral blood and hippocampal cells demonstrated no significant differences between caffeine-treated and control young adult mice in terms of DNA damage index (DI) and frequency. In contrast, when comparing young adult with aged animals, significant differences were observed in DNA damage in blood and hippocampal cells. The differences between aged animals (with or without caffeine) consisted of a significant decrease in DNA DI in the group that received caffeine. In the MN test, an increase in frequency of micronucleated polychromatic (PCE) erythrocytes was noted in aged animals that received water compared to young adult mice. In addition, comparing treated with control aged murine groups, a decrease in frequency of MN was found in PCE erythrocytes of caffeine-treated mice. Chronic caffeine consumption was neither genotoxic nor mutagenic at the dose tested; however, it appears that caffeine actually protected mice from genotoxicity and mutagenicity, consequences attributed to aging.


Asunto(s)
Sangre/efectos de los fármacos , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Daño del ADN/efectos de los fármacos , Tejido Nervioso/efectos de los fármacos , Factores de Edad , Animales , Sangre/metabolismo , Ensayo Cometa , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Pruebas de Micronúcleos , Tejido Nervioso/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-28336494

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common type of age-related dementia. Cognitive decline, beta-amyloid (Aß) accumulation, neurofibrillary tangles, and neuroinflammation are the main pathophysiological characteristics of AD. Minocycline is a tetracycline derivative with anti-inflammatory properties that has a neuroprotective effect. The aim of this study was to evaluate the effect of minocycline on memory, neurotrophins and neuroinflammation in an animal model of AD induced by the administration of Aß (1-42) oligomer. Male BALB/c mice were treated with minocycline (50mg/kg) via the oral route for a total of 17days, 24h after intracerebroventricular administration of Aß (1-42) oligomer. At the end of this period, was performed the radial maze test, and 24h after the last minocycline administration, serum was collected and the cortex and hippocampus were dissected for biochemical analysis. The administration of minocycline reversed the memory impairment caused by Aß (1-42). In the hippocampus, minocycline reversed the increases in the levels of interleukin (IL-1ß), Tumor Necrosis Factor- alpha (TNF-α) and, IL-10 caused by Aß (1-42). In the cortex, AD-like model increase the levels of IL-1ß, TNF-α and, IL-4. Minocycline treatment reversed this. In the serum, Aß (1-42) increased the levels of IL-1ß and IL-4, and minocycline was able to reverse this action, but not to reverse the decrease of IL-10 levels. Minocycline also reversed the increase in the levels of Brain-derived neurotrophic factor (BDNF) in the hippocampus caused by Aß (1-42), and reduced Nerve Growth Factor (NGF) increases in the total cortex. Therefore, our results indicate that minocycline causes improvements in the spatial memory, and cytokine levels were correlated with this effect in the brain it. Besides this, minocycline reduced BDNF and NGF levels, highlighting the promising effects of minocycline in treating AD-like dementia.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Encéfalo/efectos de los fármacos , Inflamación/prevención & control , Trastornos de la Memoria/prevención & control , Minociclina/farmacología , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/toxicidad , Péptidos beta-Amiloides/administración & dosificación , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Inflamación/sangre , Inflamación/inducido químicamente , Inflamación/metabolismo , Infusiones Intraventriculares , Interleucina-10/sangre , Interleucina-10/metabolismo , Interleucina-1beta/sangre , Interleucina-1beta/metabolismo , Interleucina-4/sangre , Interleucina-4/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/sangre , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Ratones , Fragmentos de Péptidos/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...