Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 15(2): 2249146, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37668317

RESUMEN

Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , Ratones , SARS-CoV-2 , Antibacterianos , Progresión de la Enfermedad
2.
Epidemiol Infect ; 151: e151, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37539522

RESUMEN

Laboratory-based case confirmation is an integral part of measles surveillance programmes; however, logistical constraints can delay response. Use of RDTs during initial patient contact could enhance surveillance by real-time case confirmation and accelerating public health response. Here, we evaluate performance of a novel measles IgM RDT and assess accuracy of visual interpretation using a representative collection of 125 sera from the Brazilian measles surveillance programme. RDT results were interpreted visually by a panel of six independent observers, the consensus of three observers and by relative reflectance measurements using an ESEQuant Reader. Compared to the Siemens anti-measles IgM EIA, sensitivity and specificity of the RDT were 94.9% (74/78, 87.4-98.6%) and 95.7% (45/47, 85.5-99.5%) for consensus visual results, and 93.6% (73/78, 85.7-97.9%) and 95.7% (45/47, 85.5-99.5%), for ESEQuant measurement, respectively. Observer agreement, determined by comparison between individuals and visual consensus results, and between individuals and ESEQuant measurements, achieved average kappa scores of 0.97 and 0.93 respectively. The RDT has the sensitivity and specificity required of a field-based test for measles diagnosis, and high kappa scores indicate this can be accomplished accurately by visual interpretation alone. Detailed studies are needed to establish its role within the global measles control programme.


Asunto(s)
Virus del Sarampión , Sarampión , Humanos , Brasil/epidemiología , Prueba de Diagnóstico Rápido , Reproducibilidad de los Resultados , Lectura , Inmunoglobulina M , Anticuerpos Antivirales , Sarampión/diagnóstico , Sarampión/epidemiología
3.
Mol Ther ; 31(9): 2681-2701, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37340634

RESUMEN

Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Lesión Pulmonar , MicroARNs , Humanos , Animales , Ratones , Gripe Humana/complicaciones , Gripe Humana/genética , Gripe Humana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ocludina/genética , Ocludina/metabolismo , Lesión Pulmonar/metabolismo , Uniones Estrechas/metabolismo , Carga Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Ratones Endogámicos C57BL , Antivirales
4.
Front Cardiovasc Med ; 10: 1189320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351283

RESUMEN

The emergence of the rare syndrome called vaccine-induced immune thrombocytopenia and thrombosis (VITT) after adenoviral vector vaccines, including ChAdOx1 nCov-19, raises concern about one's predisposing risk factors. Here we report the case of a 56-year-old white man who developed VITT leading to death within 9 days of symptom onset. He presented with superior sagittal sinus thrombosis, right frontal intraparenchymal hematoma, frontoparietal subarachnoid and massive ventricular hemorrhage, and right lower extremity arterial and venous thrombosis. His laboratory results showed elevated D-dimer, C-reactive protein, tissue factor, P-selectin (CD62p), and positive anti-platelet factor 4. The patient's plasma promoted higher CD62p expression in healthy donors' platelets than the controls. Genetic investigation on coagulation, thrombophilia, inflammation, and type I interferon-related genes was performed. From rare variants in European or African genomic databases, 68 single-nucleotide polymorphisms (SNPs) in one allele and 11 in two alleles from common SNPs were found in the patient genome. This report highlights the possible relationship between VITT and genetic variants. Additional investigations regarding the genetic predisposition of VITT are needed.

5.
Front Cell Infect Microbiol ; 13: 1067285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875528

RESUMEN

Introduction: Influenza A virus (IAV) is one of the leading causes of respiratory tract infections in humans, representing a major public health concern. The various types of cell death have a crucial role in IAV pathogenesis because this virus may trigger both apoptosis and necroptosis in airway epithelial cells in parallel. Macrophages play an important role in the clearance of virus particles, priming the adaptive immune response in influenza. However, the contribution of macrophage death to pathogenesis of IAV infection remains unclear. Methods: In this work, we investigated IAV-induced macrophage death, along with potential therapeutic intervention. We conducted in vitro and in vivo experiments to evaluate the mechanism and the contribution of macrophages death to the inflammatory response induced by IAV infection. Results: We found that IAV or its surface glycoprotein hemagglutinin (HA) triggers inflammatory programmed cell death in human and murine macrophages in a Toll-like receptor-4 (TLR4)- and TNF-dependent manner. Anti-TNF treatment in vivo with the clinically approved drug etanercept prevented the engagement of the necroptotic loop and mouse mortality. Etanercept impaired the IAV-induced proinflammatory cytokine storm and lung injury. Conclusion: In summary, we demonstrated a positive feedback loop of events that led to necroptosis and exacerbated inflammation in IAV-infected macrophages. Our results highlight an additional mechanism involved in severe influenza that could be attenuated with clinically available therapies.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Animales , Ratones , Etanercept , Inhibidores del Factor de Necrosis Tumoral , Apoptosis , Macrófagos
6.
PLoS One ; 17(10): e0274943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36256646

RESUMEN

The emergence of potentially pandemic viruses has resulted in preparedness efforts to develop candidate vaccines and adjuvant formulations. We evaluated the dose-sparing effect and safety of two distinct squalene-based oil-in-water adjuvant emulsion formulations (IB160 and SE) with influenza A/H7N9 antigen. This phase I, randomized, double-blind, placebo-controlled, dose-finding trial (NCT03330899), enrolled 432 healthy volunteers aged 18 to 59. Participants were randomly allocated to 8 groups: 1A) IB160 + 15µg H7N9, 1B) IB160 + 7.5µg H7N9, 1C) IB160 + 3.75µg H7N9, 2A) SE + 15µg H7N9, 2B) SE + 7.5µg H7N9, 2C) SE + 3.75µg H7N9, 3) unadjuvanted vaccine 15µg H7N9 and 4) placebo. Immunogenicity was evaluated through haemagglutination inhibition (HI) and microneutralization (MN) tests. Safety was evaluated by monitoring local and systemic, solicited and unsolicited adverse events (AE) and reactions (AR) 7 and 28 days after each study injection, respectively, whereas serious adverse events (SAE) were monitored up to 194 days post-second dose. A greater increase in antibody geometric mean titers (GMT) was observed in groups receiving adjuvanted vaccines. Vaccinees receiving IB160-adjuvanted formulations showed the greatest response in group 1B, which induced an HI GMT increase of 4.7 times, HI titers ≥40 in 45.2% of participants (MN titers ≥40 in 80.8%). Vaccinees receiving SE-adjuvanted vaccines showed the greatest response in group 2A, with an HI GMT increase of 2.5 times, HI titers ≥40 in 22.9% of participants (MN titers ≥40 in 65.7%). Frequencies of AE and AR were similar among groups. Pain at the administration site and headache were the most frequent local and systemic solicited ARs. The vaccine candidates were safe and the adjuvanted formulations have a potential dose-sparing effect on immunogenicity against influenza A/H7N9. The magnitude of this effect could be further explored.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Escualeno , Pandemias/prevención & control , Polisorbatos , Emulsiones , Anticuerpos Antivirales , Pruebas de Inhibición de Hemaglutinación , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Agua
7.
Viruses ; 14(8)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36016313

RESUMEN

Annual vaccination against influenza is the best tool to prevent deaths and hospitalizations. Regular updates of trivalent inactivated influenza vaccines (TIV) are necessary due to high mutation rates in influenza viruses. TIV effectiveness is affected by antigenic mismatches, age, previous immunity, and other host factors. Studying TIV effectiveness annually in different populations is critical. The serological responses to Southern-Hemisphere TIV and circulating influenza strains were evaluated in 2018−2020 among Brazilian volunteers, using hemagglutination inhibition (HI) assays. Post-vaccination titers were corrected to account for pre-vaccination titers. Our population achieved >83% post-vaccination seroprotection levels, whereas seroconversion rates ranged from 10% to 46%. TIV significantly enhanced antibody titers and seroprotection against all prior and contemporary vaccine and circulating strains tested. Strong cross-reactive responses were detected, especially between H1N1 subtypes. A/Singapore/INFIMH-16-0019/2016, included in the 2018 TIV, induced the poorest response. Significant titer and seroprotection reductions were observed 6 and 12 months after vaccination. Age had a slight effect on TIV response, whereas previous vaccination was associated with lower seroconversion rates and titers. Despite this, TIV induced high seroprotection for all strains, in all groups. Regular TIV evaluations, based on regional influenza strain circulation, should be conducted and the factors affecting response studied.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adulto , Anticuerpos Antivirales , Brasil/epidemiología , Pruebas de Inhibición de Hemaglutinación , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Estaciones del Año , Vacunas de Productos Inactivados
8.
Artículo en Inglés | MEDLINE | ID: mdl-32754450

RESUMEN

Influenza is a major public health problem that causes acute respiratory infection in humans. Identification of host factors influencing in disease outcome is critical for recognition of individuals with increased risk. Investigations on the role of rs34481144A and rs12252C IFITM3 polymorphisms in influenza A(H1N1)pdm09 severity is not yet conclusively determined. This study aimed to evaluate such polymorphisms frequencies and IFITM3 levels in an infected Brazilian cohort of 314 influenza A(H1N1)pdm09 cases and its putative association with clinical, epidemiological and virological data. Individuals were clinically classified into mild, severe and fatal cases. IFITM3 polymorphisms were detected by specific Taqman probes in real time PCR reactions. IFITM3 levels were determined by quantitative real time PCR. Thus, the different clinical groups presented similar distribution of rs34481144 and rs12252 genotypes and allelic frequencies. There was no significant association between the polymorphisms with severity of disease by using distinct genetic models. Additionally, geographic distribution of mutants showed that rs34481144A allele was more predominant in Brazilian Southern region. In contrast, rs12252C allele presented similar frequencies in all regions. Individuals with the distinct rs34481144 and rs12252 genotypes showed similar levels of IFITM3 and viral load in their respiratory specimens. Furthermore, IFITM3 levels were comparable in the distinct clinical groups and were not correlated with influenza viral load in analyzed samples. Thereby, rs34481144A and rs12252C polymorphisms were not associated with severity or mortality of influenza A(H1N1)pdm09 infection nor with IFITM3 transcript levels and influenza viral load in upper respiratory tract samples in a Brazilian cohort.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Proteínas de la Membrana , Proteínas de Unión al ARN , Brasil , Predisposición Genética a la Enfermedad , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/genética , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN/genética
9.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L655-L670, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31995405

RESUMEN

Inflammation triggered by influenza A virus (IAV) infection is important for viral clearance, induction of adaptive responses, and return to lung homeostasis. However, an exaggerated immune response, characterized by the overproduction of chemokines, can lead to intense lung injury, contributing to mortality. Chemokine scavenger receptors, such as ACKR2, control the levels of CC chemokines influencing the immune responses. Among the chemokine targets of ACKR2, CCL5 is important to recruit and activate lymphocytes. We investigated the role of ACKR2 during IAV infection in mice. Pulmonary ACKR2 expression was increased acutely after IAV infection preceding the virus-induced lung dysfunction. ACKR2-knockout (ACKR2-/-) mice were protected from IAV, presenting decreased viral burden and lung dysfunction. Mechanistically, the absence of ACKR2 resulted in augmented airway CCL5 levels, secreted by mononuclear and plasma cells in the lung parenchyma. The higher chemokine gradient led to an augmented recruitment of T and B lymphocytes, formation of inducible bronchus-associated lymphoid tissue and production of IgA in the airways of ACKR2-/- mice post-IAV. CCL5 neutralization in ACKR2-/- mice prevented lymphocyte recruitment and increased bronchoalveolar lavage fluid protein levels and pulmonary dysfunction. Finally, CCR5-/- mice presented increased disease severity during IAV infection, displaying increased neutrophils, pulmonary injury and dysfunction, and accentuated lethality. Collectively, our data showed that ACKR2 dampens CCL5 levels and the consequent recruitment of CCR5+ T helper 1 (Th1), T regulatory cells (Tregs), and B lymphocytes during IAV infection, decreasing pathogen control and promoting lung dysfunction in wild type mice. Therefore, ACKR2 is detrimental and CCR5 is protective during IAV infection coordinating innate and adaptive immune responses in mice.


Asunto(s)
Linfocitos B/metabolismo , Quimiocina CCL5/metabolismo , Pulmón/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Receptores CCR5/metabolismo , Receptores de Quimiocina/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Linfocitos B/virología , Líquido del Lavado Bronquioalveolar/virología , Virus de la Influenza A/patogenicidad , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/virología , Linfocitos T Reguladores/virología
10.
Infect Genet Evol ; 67: 55-59, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389547

RESUMEN

BACKGROUND: Influenza is an acute and highly contagious viral respiratory infection that causes significant morbidity and mortality. The identification of host genetic factors associated with susceptibility and severity of influenza virus infection is of paramount importance. Previous studies evaluating the potential involvement of the CCR5Δ32 polymorphism (rs333), a 32 base pair deletion in CC motif chemokine receptor 5 (CCR5) gene, in severity and mortality of influenza A(H1N1)pdm09 infected individuals have been reported, but their results are quite conflicting. OBJECTIVES: The aim of this study was the evaluation of the CCR5Δ32 frequency in individuals with mild, severe and fatal influenza A(H1N1)pdm09 infection and its putative association with clinical and epidemiologic data. PATIENTS/METHODS: A total of 432 individuals were included in this study and classified according to their clinical status, into the following groups: influenza like illness (ILI) (n = 153); severe acute respiratory infection (SARI) (n = 173) and fatal (n = 106) cases. The samples were collected in the post pandemic period, from 2012 to 2018. Individuals were further stratified according to their clinical and epidemiological data. The CCR5Δ32 variant was genotyped by PCR amplification and a subset of samples was further submitted to Sanger sequencing. RESULTS: The different clinical groups (ILI, SARI and fatal) presented similar distribution of wt/wt and wt/Δ32 genotypes and CCR5Δ32 allele frequencies. Genotype Δ32/Δ32 was not detected in our study. Additionally, no association between wt/wt and wt/Δ32 genotypes and dyspnea, a clinical factor for influenza complications was found. Similarly, no significant differences in the distribution of wt/wt and wt/Δ32 genotypes and CCR5Δ32 variant allele frequencies were observed in samples from the different Brazilian geographical regions. CONCLUSIONS: The CCR5Δ32 variant does not influence the susceptibility to influenza A(H1N1)pdm09 severe disease or mortality in individuals from Brazil.


Asunto(s)
Predisposición Genética a la Enfermedad , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/epidemiología , Gripe Humana/genética , Polimorfismo Genético , Receptores CCR5/genética , Eliminación de Secuencia , Adulto , Alelos , Brasil/epidemiología , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Gripe Humana/mortalidad , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Mortalidad , Vigilancia en Salud Pública , Índice de Severidad de la Enfermedad
11.
Front Immunol ; 9: 975, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867955

RESUMEN

Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/genética , Inflamación , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Adolescente , Adulto , Animales , Antivirales , Linfocitos T CD8-positivos/inmunología , Fosfatidilinositol 3-Quinasa Clase Ib/inmunología , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Estudios de Asociación Genética , Humanos , Subtipo H1N1 del Virus de la Influenza A , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Infiltración Neutrófila , Polimorfismo de Nucleótido Simple , Adulto Joven
12.
Front Immunol ; 9: 142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515566

RESUMEN

Pneumonia is one of the leading causes of death and mortality worldwide. The inflammatory responses that follow respiratory infections are protective leading to pathogen clearance but can also be deleterious if unregulated. The microbiota is known to be an important protective barrier against infections, mediating both direct inhibitory effects against the potential pathogen and also regulating the immune responses contributing to a proper clearance of the pathogen and return to homeostasis. GPR43 is one receptor for acetate, a microbiota metabolite shown to induce and to regulate important immune functions. Here, we addressed the role of GPR43 signaling during pulmonary bacterial infections. We have shown for the first time that the absence of GPR43 leads to increased susceptibility to Klebsiella pneumoniae infection, which was associated to both uncontrolled proliferation of bacteria and to increased inflammatory response. Mechanistically, we showed that GPR43 expression especially in neutrophils and alveolar macrophages is important for bacterial phagocytosis and killing. In addition, treatment with the GPR43 ligand, acetate, is protective during bacterial lung infection. This was associated to reduction in the number of bacteria in the airways and to the control of the inflammatory responses. Altogether, GPR43 plays an important role in the "gut-lung axis" as a sensor of the host gut microbiota activity through acetate binding promoting a proper immune response in the lungs.


Asunto(s)
Infecciones por Klebsiella/inmunología , Klebsiella pneumoniae , Receptores Acoplados a Proteínas G/inmunología , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/inmunología , Macrófagos Alveolares/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Fagocitosis , Receptores Acoplados a Proteínas G/genética
13.
Antiviral Res ; 154: 35-43, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29601892

RESUMEN

Neuraminidase inhibitors (NAIs) are the main class of antivirals currently used for the treatment of influenza infections. As influenza viruses are constantly evolving, drug-resistance can emerge resulting in reduced effectiveness of treatment. This study evaluated the presence of molecular markers associated with NAI susceptibility in 724 influenza A(H1N1)pdm09 positive samples from Brazilian surveillance system from the 2014-2016 seasons, including 76 isolates tested for oseltamivir (OST) susceptibility and 23 isolates also tested for zanamivir, peramivir and laninamivir susceptibility. We identified the H275Y (n = 3) and I223K (n = 1) NA substitutions, associated with reduced inhibition (RI) by the NAIs. Noteworthy, no epidemiological links were identified among the patients infected with the mutant viruses. Phylogenetic analysis from NA and hemagglutinin genes showed that mutant viruses were not clustered. All mutant virus strains carried the permissive substitutions V241I and N369K, in addition to the N386K, which has been shown to destabilize the NA structure. Functional NA analysis of one virus containing the H275Y mutation confirmed its highly RI profile to OST and peramivir and demonstrated that it had decreased viral replication and NA thermostability compared to the wild type virus. The remaining tested isolates presented normal inhibition profile to the NAIs tested. In conclusion, the overall frequency of influenza A(H1N1)pdm09 viruses bearing mutations associated with NAI RI was 0.6%, similar to what has been observed in recent global studies.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Neuraminidasa/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Monitoreo Epidemiológico , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Lactante , Recién Nacido , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Masculino , Persona de Mediana Edad , Mutación , Neuraminidasa/genética , Replicación Viral/efectos de los fármacos , Adulto Joven
14.
Blood ; 129(21): 2896-2907, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28320709

RESUMEN

Inflammation resolution is an active process that functions to restore tissue homeostasis. The participation of the plasminogen (Plg)/plasmin (Pla) system in the productive phase of inflammation is well known, but its involvement in the resolution phase remains unclear. Therefore, we aimed to investigate the potential role of Plg/Pla in key events during the resolution of acute inflammation and its underlying mechanisms. Plg/Pla injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that were primarily macrophages of anti-inflammatory (M2 [F4/80high Gr1- CD11bhigh]) and proresolving (Mres [F4/80med CD11blow]) phenotypes, without changing the number of macrophages with a proinflammatory profile (M1 [F4/80low Gr1+ CD11bmed]). Pleural injection of Plg/Pla also increased M2 markers (CD206 and arginase-1) and secretory products (transforming growth factor ß and interleukin-6) and decreased the expression of inducible nitric oxide synthase (M1 marker). During the resolving phase of lipopolysaccharide (LPS)-induced inflammation when resolving macrophages predominate, we found increased Plg expression and Pla activity, further supporting a link between the Plg/Pla system and key cellular events in resolution. Indeed, Plg or Pla given at the peak of inflammation promoted resolution by decreasing neutrophil numbers and increasing neutrophil apoptosis and efferocytosis in a serine-protease inhibitor-sensitive manner. Next, we confirmed the ability of Plg/Pla to both promote efferocytosis and override the prosurvival effect of LPS via annexin A1. These findings suggest that Plg and Pla regulate several key steps in inflammation resolution, namely, neutrophil apoptosis, macrophage reprogramming, and efferocytosis, which have a major impact on the establishment of an efficient resolution process.


Asunto(s)
Anexina A1/metabolismo , Reprogramación Celular , Fibrinolisina/metabolismo , Macrófagos/metabolismo , Plasminógeno/metabolismo , Enfermedad Aguda , Animales , Anexina A1/genética , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Fibrinolisina/genética , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neutrófilos/metabolismo , Neutrófilos/patología , Plasminógeno/genética , Células RAW 264.7
15.
Inflamm Res ; 66(4): 283-302, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27744631

RESUMEN

Influenza A virus (IAV) is a relevant respiratory tract pathogen leading to a great number of deaths and hospitalizations worldwide. Secondary bacterial infections are a very common cause of IAV associated morbidity and mortality. The robust inflammatory response that follows infection is important for the control of virus proliferation but is also associated with lung damage, morbidity and death. The role of the different components of immune response underlying protection or disease during IAV infection is not completely elucidated. Overall, in the context of IAV infection, inflammation is a 'double edge sword' necessary to control infection but causing disease. Therefore, a growing number of studies suggest that immunomodulatory strategies may improve disease outcome without affecting the ability of the host to deal with infection. This review summarizes recent aspects of the inflammatory responses triggered by IAV that are preferentially involved in causing severe pulmonary disease and the anti-inflammatory strategies that have been suggested to treat influenza induced immunopathology.


Asunto(s)
Infecciones Bacterianas/inmunología , Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/inmunología , Animales , Antiinflamatorios/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/etiología , Humanos , Mediadores de Inflamación/inmunología , Leucocitos/inmunología , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/tratamiento farmacológico
16.
J Leukoc Biol ; 101(1): 275-284, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27496979

RESUMEN

Gout is a disease characterized by the deposition of monosodium urate (MSU) crystals in the joints. Continuous gout episodes may lead to unresolved inflammatory responses and tissue damage. We investigated the effects of a high-fiber diet and acetate, a short-chain fatty acid (SCFA) resulting from the metabolism of fiber by gut microbiota, on the inflammatory response in an experimental model of gout in mice. Injection of MSU crystals into the knee joint of mice induced neutrophil influx and inflammatory hypernociception. The onset of inflammatory response induced by MSU crystals was not altered in animals given a high-fiber diet, but the high-fiber diet induced faster resolution of the inflammatory response. Similar results were obtained in animals given the SCFA acetate. Acetate was effective, even when given after injection of MSU crystals at the peak of the inflammatory response and induced caspase-dependent apoptosis of neutrophils that accounted for the resolution of inflammation. Resolution of neutrophilic inflammation was associated with decreased NF-κB activity and enhanced production of anti-inflammatory mediators, including IL-10, TGF-ß, and annexin A1. Acetate treatment or intake of a high-fiber diet enhanced efferocytosis, an effect also observed in vitro with neutrophils treated with acetate. In conclusion, a high-fiber diet or one of its metabolic products, acetate, controls the inflammatory response to MSU crystals by favoring the resolution of the inflammatory response. Our studies suggest that what we eat plays a determinant role in our capacity to fine tune the inflammatory response.


Asunto(s)
Acetatos/farmacología , Fibras de la Dieta/farmacología , Gota/patología , Inflamación/patología , Neutrófilos/patología , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Cristalización , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Articulaciones/efectos de los fármacos , Articulaciones/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fagocitosis/efectos de los fármacos , Ácido Úrico
17.
Front Immunol ; 8: 1799, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29326698

RESUMEN

RATIONALE: Influenza A infections are a leading cause of morbidity and mortality worldwide especially when associated with secondary pneumococcal infections. Inflammation is important to control pathogen proliferation but may also cause tissue injury and death. CXCR1/2 are chemokine receptors relevant for the recruitment of neutrophils. We investigated the role of CXCR1/2 during influenza, pneumococcal, and post-influenza pneumococcal infections. METHODS: Mice were infected with influenza A virus (IAV) or Streptococcus pneumoniae and then treated daily with the CXCR1/2 antagonist DF2162. To study secondary pneumococcal infection, mice were infected with a sublethal inoculum of IAV then infected with S. pneumoniae 14 days later. DF2162 was given in a therapeutic schedule from days 3 to 6 after influenza infection. Lethality, weight loss, inflammation, virus/bacteria counts, and lung injury were assessed. RESULTS: CXCL1 and CXCL2 were produced at high levels during IAV infection. DF2162 treatment decreased morbidity and this was associated with decreased infiltration of neutrophils in the lungs and reduced pulmonary damage and viral titers. During S. pneumoniae infection, DF2162 treatment decreased neutrophil recruitment, pulmonary damage, and lethality rates, without affecting bacteria burden. Therapeutic treatment with DF2162 during sublethal IAV infection reduced the morbidity associated with virus infection and also decreased the magnitude of inflammation, lung damage, and number of bacteria in the blood of mice subsequently infected with S. pneumoniae. CONCLUSION: Modulation of the inflammatory response by blocking CXCR1/2 improves disease outcome during respiratory influenza and pneumococcal infections, without compromising the ability of the murine host to deal with infection. Altogether, inhibition of CXCR1/2 may be a valid therapeutic strategy for treating lung infections caused by these pathogens, especially controlling secondary bacterial infection after influenza.

18.
J Med Microbiol ; 65(3): 201-210, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26758971

RESUMEN

Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the gut that include ulcerative colitis and Crohn's disease. Probiotics are live micro-organisms that may be used as adjuvant therapy for patients with IBD. The aim of this study was to evaluate the effect of prophylactic ingestion of Escherichia coli strain Nissle 1917 (EcN) in a murine model of colitis. For induction of colitis, mice were given a 3.5% dextran sodium sulfate (DSS) solution for 7 days in drinking water. EcN administration to mice subjected to DSS-induced colitis resulted in significant reduction in clinical and histopathological signs of disease and preservation of intestinal permeability. We observed reduced inflammation, as assessed by reduced levels of neutrophils, eosinophils, chemokines and cytokines. We observed an increase in the number of regulatory T-cells in Peyer's patches. Germ-free mice received faecal content from control or EcN-treated mice and were then subjected to DSS-induced colitis. We observed protection from colitis in animals that were colonized with faecal content from EcN-treated mice. These results suggest that preventative oral administration of EcN or faecal microbiota transplantation with EcN-containing microbiota ameliorates DSS-induced colitis by modifying inflammatory responsiveness to DSS.


Asunto(s)
Colitis/inducido químicamente , Escherichia coli/clasificación , Escherichia coli/fisiología , Intestinos/fisiología , Probióticos , Animales , Sulfato de Dextran/toxicidad , Heces , Femenino , Vida Libre de Gérmenes , Inflamación/metabolismo , Intestinos/microbiología , Intestinos/patología , Ratones , Ratones Endogámicos BALB C , Permeabilidad
19.
Am J Respir Cell Mol Biol ; 55(1): 24-34, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26677751

RESUMEN

Pneumococcal pneumonia is a leading cause of mortality worldwide. The inflammatory response to bacteria is necessary to control infection, but it may also contribute to tissue damage. Phosphodiesterase-4 inhibitors, such as rolipram (ROL), effectively reduce inflammation. Here, we examined the impact of ROL in a pneumococcal pneumonia murine model. Mice were infected intranasally with 10(5)-10(6) CFU of Streptococcus pneumoniae, treated with ROL in a prophylactic or therapeutic schedule in combination, or not, with the antibiotic ceftriaxone. Inflammation and bacteria counts were assessed, and ex vivo phagocytosis assays were performed. ROL treatment during S. pneumoniae infection decreased neutrophil recruitment into lungs and airways and reduced lung injury. Prophylactic ROL treatment also decreased cytokine levels in the airways. Although modulation of inflammation by ROL ameliorated pneumonia, bacteria burden was not reduced. On the other hand, antibiotic therapy reduced bacteria without reducing neutrophil infiltration, cytokine level, or lung injury. Combined ROL and ceftriaxone treatment decreased lethality rates and was more efficient in reducing inflammation, by increasing proresolving protein annexin A1 (AnxA1) expression, and bacterial burden by enhancing phagocytosis. Lack of AnxA1 increased inflammation and lethality induced by pneumococcal infection. These data show that immunomodulatory effects of phosphodiesterase-4 inhibitors are useful during severe pneumococcal pneumonia and suggest their potential benefit as adjunctive therapy during infectious diseases.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/enzimología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Neumonía Neumocócica/complicaciones , Neumonía Neumocócica/tratamiento farmacológico , Neumonía Neumocócica/enzimología , Neumonía/complicaciones , Animales , Anexina A1/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Pulmón/microbiología , Pulmón/patología , Lesión Pulmonar/complicaciones , Lesión Pulmonar/fisiopatología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos BALB C , Fagocitosis/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Neumonía/tratamiento farmacológico , Neumonía/patología , Neumonía/fisiopatología , Neumonía Neumocócica/fisiopatología , Pruebas de Función Respiratoria , Rolipram/farmacología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/fisiología
20.
Microbes Infect ; 18(3): 180-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26548605

RESUMEN

Klebsiella pneumoniae (Kp) a common cause of pneumonia leads to intense lung injury and mortality that are correlated with infective exacerbations. Probiotics are a class of microorganisms that have immunomodulatory effects to benefit health. We investigated whether the probiotic Bifidobacterium longum 5(1A) induces protection in mice against lung infection induced by Kp and the potential involved mechanisms. Kp infection induced secretion of pro-inflammatory cytokines, neutrophil recruitment, significant bacterial load in the lung and 50% lethality. However, treatment with live B. longum 5(1A) induced faster resolution of inflammation associated with an increased production of IL-10, decreased lung damage with significantly reduction of bacterial burden that contributed to rescue 100% of mice from death. We found that these effects could be attributed, at least in part, to activation of the Toll-like receptor (TLR) adapter protein Mal, since B. longum 5(1A) treatment in Mal-deficient infected mice did not show the protection observed in wild type infected mice. Thus, we propose that live B. longum 5(1A) activates TLR-signaling pathway that results in ROS production and protects the host against pneumonia-induced death by finely tuning the inflammatory response and contributing to faster return to lung homeostasis.


Asunto(s)
Bifidobacterium/inmunología , Inmunomodulación , Infecciones por Klebsiella/terapia , Klebsiella pneumoniae/inmunología , Neumonía Bacteriana/terapia , Probióticos/administración & dosificación , Animales , Carga Bacteriana , Niño , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...