Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geroscience ; 46(3): 3445-3455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38358579

RESUMEN

Senescent cell number increases with age in different tissues, leading to greater senescent cell load, proinflammatory stress, and tissue dysfunction. In the current study, we tested the efficacy of senolytic drugs to reduce ovarian senescence and improve fertility in reproductive age female mice. In the first experiment, 1-month-old C57BL/6 female mice were treated every other week with D + Q (n = 24) or placebo (n = 24). At 3 and 6 months of age, female mice were mated with untreated males to evaluate pregnancy rate and litter size. In the second experiment, 6-month-old C57BL/6 female mice were treated monthly with D + Q (n = 30), fisetin (n = 30), or placebo (n = 30). Females were treated once a month until 11 months of age, then they were mated with untreated males for 30 days to evaluate pregnancy rate and litter size. In the first experiment, D + Q treatment did not affect pregnancy rate (P = 0.68), litter size (P = 0.58), or ovarian reserve (P > 0.05). Lipofuscin staining was lower in females treated with D + Q (P = 0.04), but expression of senescence genes in ovaries was similar. In the second experiment, D + Q or fisetin treatment also did not affect pregnancy rate (P = 0.37), litter size (P = 0.20), or ovarian reserve (P > 0.05). Lipofuscin staining (P = 0.008) and macrophage infiltration (P = 0.002) was lower in fisetin treated females. Overall, treatment with D + Q or fisetin did not affect ovarian reserve or fertility but did decrease some senescence markers in the ovary.


Asunto(s)
Reserva Ovárica , Embarazo , Masculino , Ratones , Femenino , Animales , Senoterapéuticos , Lipofuscina , Ratones Endogámicos C57BL , Fertilidad
2.
Geroscience ; 46(3): 3085-3103, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38191834

RESUMEN

Colitis, a subtype of inflammatory bowel disease (IBD), is a multifactorial disorder characterized by chronic inflammation of the colon. Among various experimental models used in the study of IBD, the chemical colitogenic dextran sulfate sodium (DSS) is most commonly employed to induce colitis in vivo. In the search for new therapeutic strategies, Fisetin, a flavonoid found in many fruits and vegetables, has recently garnered attention for its senolytic properties. Female mice were administered 2.5% DSS in sterile drinking water and were subsequently treated with Fisetin or vehicle by oral gavage. DSS significantly upregulated beta-galactosidase activity in colonic proteins, while Fisetin remarkably inhibited its activity to baseline levels. Particularly, qPCR revealed that the senescence and inflammation markers Vimentin and Ptgs2 were elevated by DSS exposure with Fisetin treatment inhibiting the expression of p53, Bcl2, Cxcl1, and Mcp1, indicating that the treatment reduced senescent cell burden in the DSS targeted intestine. Alongside, senescence and inflammation associated miRNAs miR-149-5p, miR-96-5p, miR-34a-5p, and miR-30e-5p were significantly inhibited by DSS exposure and restored by Fisetin treatment, revealing novel targets for the treatment of IBDs. Metagenomics was implemented to assess impacts on the microbiota, with DSS increasing the prevalence of bacteria in the phyla Bacteroidetes. Meanwhile, Fisetin restored gut health through increased abundance of Akkermansia muciniphila, which is negatively correlated with senescence and inflammation. Our study suggests that Fisetin mitigates DSS-induced colitis by targeting senescence and inflammation and restoring beneficial bacteria in the gut indicating its potential as a therapeutic intervention for IBDs.


Asunto(s)
Colitis , Flavonoles , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , MicroARNs , Femenino , Animales , Ratones , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación , Enfermedades Inflamatorias del Intestino/microbiología , Biomarcadores
3.
Geroscience ; 46(2): 2139-2151, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37857995

RESUMEN

In females, there is a continuous decline of the ovarian reserve with age, which results in menopause in women or estropause in mice. Loss of ovarian function results in metabolic alterations in mice and women. Based on this, we aimed to evaluate the effect of caloric restriction (CR) on redox status and metabolic changes in chemically induced estropause in mice. For this, mice were divided into four groups (n = 10): cyclic ad libitum (AL), cyclic 30% CR, AL estropause, and estropause 30% CR. Estropause was induced using 4-vinylcyclohexene diepoxide (VCD) for 20 consecutive days in 2-month-old females. The CR protocol started at 5 months of age and the treatments lasted for 4 months. The CR females gained less body weight than AL females (p < 0.001) and had lower glycemic curves in response to glucose tolerance test (GTT). The AL estropause females had the highest body weight and body fat, despite having lower food intake. However, the estropause females on 30% CR lost the most body weight and had the lowest amount of body fat compared to all groups. The effect of 30% CR on redox status in fat and liver tissue was similar for cyclic and estropause females. Interestingly, estropause decreased ROS in adipose tissue, while increasing it in the liver. No significant effects of CR on redox status were observed. Chemically induced estropause did not influence the response to 30% CR on glucose tolerance and redox status; however, weight loss was exarcebated compared to cyclic females.


Asunto(s)
Restricción Calórica , Pérdida de Peso , Humanos , Ratones , Femenino , Animales , Peso Corporal , Tejido Adiposo , Oxidación-Reducción
4.
Physiol Int ; 110(2): 121-134, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37235453

RESUMEN

Cellular senescence is a defense mechanism to arrest proliferation of damaged cells. The number of senescent cells increases with age in different tissues and contributes to the development of age-related diseases. Old mice treated with senolytics drugs, dasatinib and quercetin (D+Q), have reduced senescent cells burden. The aim of this study was to evaluate the effects of D+Q on testicular function and fertility of male mice. Mice (n = 9/group) received D (5 mg kg-1) and Q (50 mg kg-1) via gavage every moth for three consecutive days from 3 to 8 months of age. At 8 months mice were breed with young non-treated females and euthanized. The treatment of male mice with D+Q increased serum testosterone levels and sperm concentration and decreased abnormal sperm morphology. Sperm motility, seminiferous tubule morphometry, testicular gene expression and fertility were not affected by treatment. There was no effect of D+Q treatment in ß-galactosidase activity and in lipofuscin staining in testes. D+Q treatment also did not affect body mass gain and testes mass. In conclusion, D+Q treatment increased serum testosterone levels and sperm concentration and decreased abnormal sperm morphology, however did not affect fertility. Further studies with older mice and different senolytics are necessary to elucidate the effects in the decline of sperm output (quality and quantity) associated with aging.


Asunto(s)
Quercetina , Testosterona , Femenino , Masculino , Animales , Ratones , Quercetina/farmacología , Dasatinib/farmacología , Senoterapéuticos , Motilidad Espermática , Semen/metabolismo , Espermatozoides
5.
Geroscience ; 45(4): 2109-2120, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35689785

RESUMEN

17α-estradiol (17α-E2) is referred to as a nonfeminizing estrogen that was recently found to extend healthspan and lifespan in male, but not female, mice. Despite an abundance of data indicating that 17α-E2 attenuates several hallmarks of aging in male rodents, very little is known with regard to its effects on feminization and fertility. In these studies, we evaluated the effects of 17α-E2 on several markers of male reproductive health in two independent cohorts of mice. In alignment with our previous reports, chronic 17α-E2 treatment prevented gains in body mass, but did not adversely affect testes mass or seminiferous tubule morphology. We subsequently determined that chronic 17α-E2 treatment also did not alter plasma 17ß-estradiol or estrone concentrations, while mildly increasing plasma testosterone levels. We also determined that chronic 17α-E2 treatment did not alter plasma follicle-stimulating hormone or luteinizing hormone concentrations, which suggests 17α-E2 treatment does not alter gonadotropin-releasing hormone neuronal function. Sperm quantity, morphology, membrane integrity, and various motility measures were also unaffected by chronic 17α-E2 treatment in our studies. Lastly, two different approaches were used to evaluate male fertility in these studies. We found that chronic 17α-E2 treatment did not diminish the ability of male mice to impregnate female mice, or to generate successfully implanted embryos in the uterus. We conclude that chronic treatment with 17α-E2 at the dose most commonly employed in aging research does not adversely affect reproductive fitness in male mice, which suggests 17α-E2 does not extend lifespan or curtail disease parameters through tradeoff effects with reproduction.


Asunto(s)
Estradiol , Longevidad , Masculino , Femenino , Animales , Ratones , Estradiol/farmacología , Semen , Reproducción , Fertilidad , Espermatozoides
6.
Geroscience ; 44(3): 1747-1759, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460445

RESUMEN

Senescent cells are in a cell cycle arrest state and accumulate with aging and obesity, contributing to a chronic inflammatory state. Treatment with senolytic drugs dasatinib and quercetin (D + Q) can reduce senescent cell burden in several tissues, increasing lifespan. Despite this, there are few reports about senescent cells accumulating in female reproductive tissues. Therefore, the aim of the study was to characterize the ovarian reserve and its relationship with cellular senescence in genetically obese mice (ob/ob). In experiment 1, ob/ob (n = 5) and wild-type (WT) mice (n = 5) at 12 months of age were evaluated. In experiment 2, 2-month-old female ob/ob mice were treated with senolytics (D + Q, n = 6) or placebo (n = 6) during the 4 months. Obese mice had more senescent cells in ovaries, indicated by increased p21 and p16 and lipofuscin staining and macrophage infiltration. Treatment with D + Q significantly reduced senescent cell burden in ovaries of obese mice. Neither obesity nor treatment with D + Q affected the number of ovarian follicles. In conclusion, our data indicate that obesity due to leptin deficiency increases the load of senescent cells in the ovary, which is reduced by treatment by senolytics. However, neither obesity nor D + Q treatment affected the ovarian reserve.


Asunto(s)
Ovario , Senoterapéuticos , Animales , Senescencia Celular , Dasatinib/farmacología , Femenino , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Quercetina/farmacología
7.
Exp Gerontol ; 159: 111669, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032571

RESUMEN

Calorie restriction (CR) (25-40%) is the most commonly studied strategy for curtailing age-related disease and has also been found to extend reproductive lifespan in female mice. However, the effects of mild CR (10%), which is sustainable, on ovarian aging has not yet been addressed. 17α-estradiol (17α-E2) is another intervention shown to positively modulate healthspan and lifespan in mice but its effects on female reproduction remain unclear. We evaluated the effects of mild CR (10%) and 17α-E2 treatment on ovarian reserve and female fertility over a 24-week period, and compared these effects with the more commonly employed 30% CR regimen. Both 10% and 30% CR elicited positive effects on the preservation of ovarian reserve, whereas 17α-E2 did not alter parameters associated with ovarian function. Following refeeding, both 10% and 30% increased fertility as evidenced by greater pregnancy rates. In aligned with the ovarian reserve data, 17α-E2 also failed to improve fertility. Collectively, these data indicate that 10% CR is effective in preserving ovarian function and fertility, while 17α-E2 does not appear to have therapeutic potential for delaying ovarian aging.


Asunto(s)
Reserva Ovárica , Animales , Restricción Calórica , Estradiol/farmacología , Femenino , Fertilidad , Ratones , Ovario , Embarazo
8.
Geroscience ; 44(2): 1071-1081, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33954912

RESUMEN

Evidence points to an important role of the growth hormone (GH) in the aging process and longevity. GH-deficient mice are smaller, live longer than normal littermates, and females have an increased ovarian reserve. The aim of the study was to evaluate the role of GH in the ovarian reserve by evaluating DNA damage, macrophage infiltration, and granulosa cell number in primordial and primary follicles. Experiment 1 used GH-deficient Ames dwarf mice (df/df, n = 12) and their normal littermates (N/df, n = 12), receiving GH or saline injections. Experiment 2 included transgenic mice overexpressing bovine GH (bGH) (n = 6) and normal mice (N, n = 6). DNA damage (anti-γH2AX) and macrophage counting (anti-CD68) were evaluated by immunofluorescence. Female df/df mice had lower γH2AX foci intensity in both oocytes and granulosa cells of primordial and primary follicles (p < 0.05), indicating fewer DNA double-strand breaks (DSBs). GH treatment increased DSBs in both df/df and N/df mice. Inversely, bGH mice had a higher quantity of DSBs in both oocytes and granulosa cells of primordial and primary follicles (p < 0.05). Df/df mice showed ovarian tissue with less macrophage infiltration than N/df mice (p < 0.05) and GH treatment increased macrophage infiltration (p < 0.05). In contrast, bGH mice had ovarian tissue with more macrophage infiltration compared to normal mice (p < 0.05). The current study shows that GH increases DNA DSBs in oocytes and granulosa cells and raises macrophage infiltration in the ovaries, pointing to the role of the GH/IGF-I axis in maintenance of oocyte DNA integrity and ovarian macrophage infiltration in mice.


Asunto(s)
Daño del ADN , Hormona del Crecimiento , Macrófagos , Ovario , Animales , Bovinos , ADN , Femenino , Ratones , Folículo Ovárico
9.
J Gerontol A Biol Sci Med Sci ; 76(9): 1579-1586, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-33037434

RESUMEN

The mammalian female is born with a limited ovarian reserve of primordial follicles. These primordial follicles are slowly activated throughout the reproductive lifecycle, thereby determining lifecycle length. Once primordial follicles are exhausted, women undergo menopause, which is associated with several metabolic perturbations and a higher mortality risk. Long before exhaustion of the reserve, females experience severe declines in fertility and health. As such, significant efforts have been made to unravel the mechanisms that promote ovarian aging and insufficiency. In this review, we explain how long-living murine models can provide insights in the regulation of ovarian aging. There is now overwhelming evidence that most life-span-extending strategies, and long-living mutant models simultaneously delay ovarian aging. Therefore, it appears that the same mechanisms that regulate somatic aging may also be modulating ovarian aging and germ cell exhaustion. We explore several potential contributing mechanisms including insulin resistance, inflammation, and DNA damage-all of which are hallmarks of cellular aging throughout the body including the ovary. These findings are in alignment with the disposable soma theory of aging, which dictates a trade-off between growth, reproduction, and DNA repair. Therefore, delaying ovarian aging will not only increase the fertility window of middle age females, but may also actively prevent menopausal-related decline in systemic health parameters, compressing the period of morbidity in mid-to-late life in females.


Asunto(s)
Envejecimiento/fisiología , Folículo Ovárico/fisiología , Reserva Ovárica/fisiología , Animales , Restricción Calórica , Femenino , Fertilidad/fisiología , Menopausia/fisiología , Ratones , Modelos Animales
10.
Mech Ageing Dev ; 194: 111425, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33383072

RESUMEN

Decline in ovarian reserve with advancing age is associated with reduced fertility and the emergence of metabolic disturbances, osteoporosis, and neurodegeneration. Recent studies have provided insight into connections between ovarian insufficiency and systemic aging, although the basic mechanisms that promote ovarian reserve depletion remain unknown. Here, we sought to determine if chronological age is linked to changes in ovarian cellular senescence, transcriptomic, and epigenetic mechanisms in a mouse model. Histological assessments and transcriptional analyses revealed the accumulation of lipofuscin aggresomes and senescence-related transcripts (Cdkn1a, Cdkn2a, Pai-1 and Hmgb1) significantly increased with advancing age. Transcriptomic profiling and pathway analyses following RNA sequencing, revealed an upregulation of genes related to pro-inflammatory stress and cell-cycle inhibition, whereas genes involved in cell-cycle progression were downregulated; which could be indicative of senescent cell accumulation. The emergence of these senescence-related markers preceded the dramatic decline in primordial follicle reserve observed. Whole Genome Oxidative Bisulfite Sequencing (WGoxBS) found no genome-wide or genomic context-specific DNA methylation and hydroxymethylation changes with advancing age. These findings suggest that cellular senescence may contribute to ovarian aging, and thus, declines in ovarian follicular reserve. Cell-type-specific analyses across the reproductive lifespan are needed to fully elucidate the mechanisms that promote ovarian insufficiency.


Asunto(s)
Envejecimiento/patología , Senescencia Celular , Folículo Ovárico/patología , Reserva Ovárica , Ovario/patología , Insuficiencia Ovárica Primaria/patología , Factores de Edad , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas/genética , Citocinas/metabolismo , Metilación de ADN , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Folículo Ovárico/metabolismo , Folículo Ovárico/fisiopatología , Ovario/metabolismo , Ovario/fisiopatología , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/fisiopatología , Transcriptoma
11.
Reprod Fertil Dev ; 32(18): 1338-1349, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33243369

RESUMEN

The aim of this study was to investigate the effect of calorie restriction (CR) during pregnancy in mice on metabolism and ovarian function in the offspring. Pregnant female mice were divided into two groups, a control group and a CR group (n=7 in each). Mice in the CR group were fed 50% of the amount consumed by control females from Day 10 of gestation until delivery. After weaning, the offspring received diet ad libitum until 3 months of age, when ovaries were collected. Ovaries were serially cut and every sixth section was used for follicle counting. Female offspring from CR dams tended to have increased bodyweight compared with offspring from control females (P=0.08). Interestingly, fewer primordial follicles (60% reduction; P=0.001), transitional follicles (P=0.0006) and total follicles (P=0.006) were observed in offspring from CR mothers. The number of primary, secondary and tertiary follicles did not differ between the groups (P>0.05). The CR offspring had fewer DNA double-strand breaks in primary follicle oocytes (P=0.03). In summary, CR during the second half of gestation decreased primordial ovarian follicle reserve in female offspring. These findings suggest that undernutrition during the second half of gestation may decrease the reproductive lifespan of female offspring.


Asunto(s)
Restricción Calórica/efectos adversos , Reserva Ovárica/fisiología , Fenómenos Fisiologicos de la Nutrición Prenatal/fisiología , Animales , Animales Recién Nacidos , Femenino , Glucosa/metabolismo , Masculino , Desnutrición/complicaciones , Desnutrición/metabolismo , Desnutrición/fisiopatología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Reproducción/fisiología
12.
Geroscience ; 41(4): 395-408, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31359237

RESUMEN

Caloric restriction (CR) increases the preservation of the ovarian primordial follicular reserve, which can potentially delay menopause. Rapamycin also increases preservation on the ovarian reserve, with similar mechanism to CR. Therefore, the aim of our study was to evaluate the effects of rapamycin and CR on metabolism, ovarian reserve, and gene expression in mice. Thirty-six female mice were allocated into three groups: control, rapamycin-treated (4 mg/kg body weight every other day), and 30% CR. Caloric restricted females had lower body weight (P < 0.05) and increased insulin sensitivity (P = 0.003), while rapamycin injection did not change body weight (P > 0.05) and induced insulin resistance (P < 0.05). Both CR and rapamycin females displayed a higher number of primordial follicles (P = 0.02 and 0.04, respectively), fewer primary, secondary, and tertiary follicles (P < 0.05) and displayed increased ovarian Foxo3a gene expression (P < 0.05). Despite the divergent metabolic effects of the CR and rapamycin treatments, females from both groups displayed a similar increase in ovarian reserve, which was associated with higher expression of ovarian Foxo3a.


Asunto(s)
Restricción Calórica , Inmunosupresores/farmacología , Folículo Ovárico/patología , Reserva Ovárica , Sirolimus/farmacología , Animales , Peso Corporal , Femenino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expresión Génica , Resistencia a la Insulina , Ratones Endogámicos C57BL , Ovario/metabolismo , ARN/metabolismo
13.
Nutr Res ; 36(1): 9-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26773776

RESUMEN

Paraoxonase 1 (PON1) is an enzyme that prevents the peroxidation of lipoprotein and cell membranes. Our hypothesis is that the effect of the PON1 T(-107)C polymorphism on serum PON1 activity in healthy adult women is dependent on their fatty acid intake profile. This study included women (n = 39) who completed a food frequency questionnaire. Fatty acid intake was estimated based on the interview and a nutrient reference table. Blood samples were collected for genotyping and to measure serum PON1 activity. Serum PON1 activity was different among genotypes and was higher for women of the CC genotype (P < .001). Women in the study were categorized in 2 groups according to the median nutrient intake. Overall, there was a difference (P < .05) in serum PON1 activity between the CC and TT genotypes in women ingesting either above or below the median total fat, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, omega 3 (n-3) and omega 6 (n-6; P < .05). However, genotype effects on serum PON1 activity were not observed in women ingesting below the median (15:1) ratio of n-6/n-3 (P > .05) but were observed in women ingesting above the ratio of n-6/n-3 (P < .05). This is partly because women of the CC genotype had decreased PON1 activity when ingesting a lower ratio of n-6/n-3 diet (P < .05), while women of the TT genotype had increased PON1 activity (P < .05). In conclusion, the overall presence of the C allele was associated with increased serum PON1 activity, although a diet with high saturated fatty acid or a low ratio of n-6/n-3 reduced PON1 activity in women with the CC genotype.


Asunto(s)
Arildialquilfosfatasa/genética , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Adolescente , Adulto , Arildialquilfosfatasa/sangre , Arildialquilfosfatasa/metabolismo , Brasil , Estudios Transversales , Enfermedades Carenciales/sangre , Enfermedades Carenciales/enzimología , Enfermedades Carenciales/etiología , Enfermedades Carenciales/genética , Ácidos Grasos Esenciales/deficiencia , Ácidos Grasos Omega-3/efectos adversos , Ácidos Grasos Omega-6/efectos adversos , Ácidos Grasos Omega-6/deficiencia , Femenino , Estudios de Asociación Genética , Hospitales Universitarios , Humanos , Peroxidación de Lípido , Persona de Mediana Edad , Encuestas Nutricionales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...