Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Res Sq ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38645156

RESUMEN

Background: Since 2015, malaria vector control on Bioko Island has relied heavily upon long-lasting insecticidal nets (LLIN) to complement other interventions. Despite significant resources utilised, however, achieving and maintaining high coverage has been elusive. Here, core LLIN indicators were used to assess and redefine distribution strategies. Methods: LLIN indicators were estimated for Bioko Island between 2015 and 2022 using a 1×1 km grid of areas. The way these indicators interacted was used to critically assess coverage targets. Particular attention was paid to spatial heterogeneity and to differences between urban Malabo, the capital, and the rural periphery. Results: LLIN coverage according to all indicators varied substantially across areas, decreased significantly soon after mass distribution campaigns (MDC) and, with few exceptions, remained consistently below the recommended target. Use was strongly correlated with population access, particularly in Malabo. After a change in strategy in Malabo from MDC to fixed distribution points, use-to-access showed significant improvement, indicating those who obtained their nets from these sources were more likely to keep them and use them. Moreover, their use rates were significantly higher than those of whom sourced their nets elsewhere. Conclusions: Striking a better balance between LLIN distribution efficiency and coverage represents a major challenge as LLIN retention and use rates remain low despite high access resulting from MDC. The cost benefit of fixed distribution points in Malabo was deemed significant, providing a viable alternative for guaranteeing access to LLINs to those who use them.

2.
Trends Parasitol ; 40(5): 362-366, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582683

RESUMEN

The Equatorial Guinea Malaria Vaccine Initiative (EGMVI) highlights how long-term African government and international energy industry investment, plus novel partnerships, can enable clinical development of vaccines in Africa, for Africa. We review achievements and challenges of this pioneering, award-winning, public-private partnership which offers a model for future Africa-centric clinical research and development (R&D).


Asunto(s)
Vacunas contra la Malaria , Desarrollo de Vacunas , Guinea Ecuatorial , Vacunas contra la Malaria/inmunología , Humanos , Malaria/prevención & control , Asociación entre el Sector Público-Privado , África
3.
Malar J ; 22(1): 323, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880774

RESUMEN

BACKGROUND: Indoor residual spraying (IRS) is a common vector control strategy in countries with high malaria burden. Historically, social norms have prevented women from working in IRS programmes. The Bioko Island Malaria Elimination Project has actively sought to reduce gender inequality in malaria control operations for many years by promoting women's participation in IRS. METHODS: This study investigated the progress of female engagement and compared spray productivity by gender from 2010 to 2021, using inferential tests and multivariable regression. Spray productivity was measured by rooms sprayed by spray operator per day (RSOD), houses sprayed by spray operator per day (HSOD), and the daily productivity ratio (DPR), defined as the ratio of RSOD to HSOD, which standardized productivity by house size. RESULTS: The percentage of women participating in IRS has increased over time. The difference in DPR comparing male and female spray operators was only statistically significant (p < 0.05) for two rounds, where the value was higher for women compared to men. Regression analyses showed marginal, significant differences in DPR between men and women, but beta coefficients were extremely small and thus not indicative of a measurable effect of gender on operational performance. CONCLUSIONS: The quantitative analyses of spray productivity are counter to stigmatizing beliefs that women are less capable than male counterparts during IRS spray rounds. The findings from this research support the participation of women in IRS campaigns, and a renewed effort to implement equitable policies and practices that intentionally engage women in vector control activities.


Asunto(s)
Insecticidas , Malaria , Humanos , Masculino , Femenino , Guinea Ecuatorial , Control de Mosquitos , Malaria/prevención & control
4.
PLOS Glob Public Health ; 3(9): e0001516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37756280

RESUMEN

Malaria surveillance is hampered by the widespread use of diagnostic tests with low sensitivity. Adequate molecular malaria diagnostics are often only available in centralized laboratories. PlasmoPod is a novel cartridge-based nucleic acid amplification test for rapid, sensitive, and quantitative detection of malaria parasites. PlasmoPod is based on reverse-transcription quantitative polymerase chain reaction (RT-qPCR) of the highly abundant Plasmodium spp. 18S ribosomal RNA/DNA biomarker and is run on a portable qPCR instrument which allows diagnosis in less than 30 minutes. Our analytical performance evaluation indicates that a limit-of-detection as low as 0.02 parasites/µL can be achieved and no cross-reactivity with other pathogens common in malaria endemic regions was observed. In a cohort of 102 asymptomatic individuals from Bioko Island with low malaria parasite densities, PlasmoPod accurately detected 83 cases, resulting in an overall detection rate of 81.4%. Notably, there was a strong correlation between the Cq values obtained from the reference RT-qPCR assay and those obtained from PlasmoPod. In an independent cohort, using dried blood spots from malaria symptomatic children living in the Central African Republic, we demonstrated that PlasmoPod outperforms malaria rapid diagnostic tests based on the PfHRP2 and panLDH antigens as well as thick blood smear microscopy. Our data suggest that this 30-minute sample-to-result RT-qPCR procedure is likely to achieve a diagnostic performance comparable to a standard laboratory-based RT-qPCR setup. We believe that the PlasmoPod rapid NAAT could enable widespread accessibility of high-quality and cost-effective molecular malaria surveillance data through decentralization of testing and surveillance activities, especially in elimination settings.

5.
PLoS Comput Biol ; 19(6): e1010684, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37307282

RESUMEN

The Ross-Macdonald model has exerted enormous influence over the study of malaria transmission dynamics and control, but it lacked features to describe parasite dispersal, travel, and other important aspects of heterogeneous transmission. Here, we present a patch-based differential equation modeling framework that extends the Ross-Macdonald model with sufficient skill and complexity to support planning, monitoring and evaluation for Plasmodium falciparum malaria control. We designed a generic interface for building structured, spatial models of malaria transmission based on a new algorithm for mosquito blood feeding. We developed new algorithms to simulate adult mosquito demography, dispersal, and egg laying in response to resource availability. The core dynamical components describing mosquito ecology and malaria transmission were decomposed, redesigned and reassembled into a modular framework. Structural elements in the framework-human population strata, patches, and aquatic habitats-interact through a flexible design that facilitates construction of ensembles of models with scalable complexity to support robust analytics for malaria policy and adaptive malaria control. We propose updated definitions for the human biting rate and entomological inoculation rates. We present new formulas to describe parasite dispersal and spatial dynamics under steady state conditions, including the human biting rates, parasite dispersal, the "vectorial capacity matrix," a human transmitting capacity distribution matrix, and threshold conditions. An [Formula: see text] package that implements the framework, solves the differential equations, and computes spatial metrics for models developed in this framework has been developed. Development of the model and metrics have focused on malaria, but since the framework is modular, the same ideas and software can be applied to other mosquito-borne pathogen systems.


Asunto(s)
Culicidae , Malaria Falciparum , Malaria , Adulto , Animales , Humanos , Malaria/epidemiología , Culicidae/fisiología , Ecología , Ecosistema
6.
Am J Trop Med Hyg ; 109(1): 138-146, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37160281

RESUMEN

The radiation-attenuated Plasmodium falciparum sporozoites (PfSPZ) Vaccine has demonstrated safety and immunogenicity in 5-month-old to 50-year-old Africans in multiple trials. Except for one, each trial has restricted enrollment to either infants and children or adults < 50 years old. This trial was conducted in Equatorial Guinea and assessed the safety, tolerability, and immunogenicity of three direct venous inoculations of 1.8 × 106 or 2.7 × 106 PfSPZ, of PfSPZ Vaccine, or normal saline administered at 8-week intervals in a randomized, double-blind, placebo-controlled trial stratified by age (6-11 months and 1-5, 6-10, 11-17, 18-35, and 36-61 years). All doses were successfully administered. In all, 192/207 injections (93%) in those aged 6-61 years were rated as causing no or mild pain. There were no significant differences in solicited adverse events (AEs) between vaccinees and controls in any age group (P ≥ 0.17). There were no significant differences between vaccinees and controls with respect to the rates or severity of unsolicited AEs or laboratory abnormalities. Development of antibodies to P. falciparum circumsporozoite protein occurred in 67/69 vaccinees (97%) and 0/15 controls. Median antibody levels were highest in infants and 1-5-year-olds and declined progressively with age. Antibody responses in children were greater than in adults protected against controlled human malaria infection. Robust immunogenicity, combined with a benign AE profile, indicates children are an ideal target for immunization with PfSPZ Vaccine.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Animales , Adulto , Humanos , Niño , Lactante , Preescolar , Persona de Mediana Edad , Plasmodium falciparum , Malaria Falciparum/prevención & control , Esporozoítos , Vacunas Atenuadas , Guinea Ecuatorial , Método Doble Ciego , Inmunogenicidad Vacunal
7.
Malar J ; 22(1): 72, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859263

RESUMEN

BACKGROUND: Since 2004, malaria transmission on Bioko Island has declined significantly as a result of the scaling-up of control interventions. The aim of eliminating malaria from the Island remains elusive, however, underscoring the need to adapt control to the local context. Understanding the factors driving the risk of malaria infection is critical to inform optimal suits of interventions in this adaptive approach. METHODS: This study used individual and household-level data from the 2015 and 2018 annual malaria indicator surveys on Bioko Island, as well as remotely-sensed environmental data in multilevel logistic regression models to quantify the odds of malaria infection. The analyses were stratified by urban and rural settings and by survey year. RESULTS: Malaria prevalence was higher in 10-14-year-old children and similar between female and male individuals. After adjusting for demographic factors and other covariates, many of the variables investigated showed no significant association with malaria infection. The factor most strongly associated was history of travel to mainland Equatorial Guinea (mEG), which increased the odds significantly both in urban and rural settings (people who travelled had 4 times the odds of infection). Sleeping under a long-lasting insecticidal net decreased significantly the odds of malaria across urban and rural settings and survey years (net users had around 30% less odds of infection), highlighting their contribution to malaria control on the Island. Improved housing conditions indicated some protection, though this was not consistent across settings and survey year. CONCLUSIONS: Malaria risk on Bioko Island is heterogeneous and determined by a combination of factors interacting with local mosquito ecology. These interactions grant further investigation in order to better adapt control according to need. The single most important risk factor identified was travel to mEG, in line with previous investigations, and represents a great challenge for the success of malaria control on the Island.


Asunto(s)
Culicidae , Malaria , Niño , Animales , Humanos , Femenino , Masculino , Adolescente , Factores de Riesgo , Ecología , Guinea Ecuatorial
8.
Trop Med Infect Dis ; 8(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36977150

RESUMEN

INTRODUCTION: Malaria and soil-transmitted helminth (STH) co-infection is an important parasitic infection affecting populations in co-endemic countries including Equatorial Guinea. To date, the health impact of STH and malaria co-infection is inconclusive. The current study aimed to report the malaria and STH infection epidemiology in the continental region of Equatorial Guinea. METHODS: We performed a cross-sectional study between October 2020 and January 2021 in the Bata district of Equatorial Guinea. Participants aged 1-9 years, 10-17 years and above 18 were recruited. Fresh venous blood was collected for malaria testing via mRDTs and light microscopy. Stool specimens were collected, and the Kato-Katz technique was used to detect the presence of Ascaris lumbricoides, Trichuris trichiura, hookworm spp. and intestinal Schistosoma eggs. RESULTS: A total of 402 participants were included in this study. An amount of 44.3% of them lived in urban areas, and only 51.9% of them reported having bed nets. Malaria infections were detected in 34.8% of the participants, while 50% of malaria infections were reported in children aged 10-17 years. Females had a lower prevalence of malaria (28.8%) compared with males (41.7%). Children of 1-9 years carried more gametocytes compared with other age groups. An amount of 49.3% of the participants infected with T. trichiura had malaria parasites compared with those infected with A. lumbricoides (39.6%) or both (46.8%). CONCLUSIONS: The overlapping problem of STH and malaria is neglected in Bata. The current study forces the government and other stakeholders involved in the fight against malaria and STH to consider a combined control program strategy for both parasitic infections in Equatorial Guinea.

9.
Malar J ; 21(1): 357, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36447234

RESUMEN

BACKGROUND: The ability of malaria rapid diagnostic tests (RDTs) to effectively detect active infections is being compromised by the presence of malaria strains with genomic deletions at the hrp2 and hrp3 loci, encoding the antigens most commonly targeted in diagnostics for Plasmodium falciparum detection. The presence of such deletions can be determined in publically available P. falciparum whole genome sequencing (WGS) datasets. A computational approach was developed and validated, termed Gene Coverage Count and Classification (GC3), to analyse genome-wide sequence coverage data and provide informative outputs to assess presence and coverage profile of a target locus in WGS data. GC3 was applied to detect deletions at hrp2 and hrp3 (hrp2/3) and flanking genes in different geographic regions and across time points. METHODS: GC3 uses Python and R scripts to extract locus read coverage metrics from mapped WGS data according to user-defined parameters and generates relevant tables and figures. GC3 was tested using WGS data for laboratory reference strains with known hrp2/3 genotypes, and its results compared to those of a hrp2/3-specific qPCR assay. Samples with at least 25% of coding region positions with zero coverage were classified as having a deletion. Publicly available sequence data was analysed and compared with published deletion frequency estimates. RESULTS: GC3 results matched the expected coverage of known laboratory reference strains. Agreement between GC3 and a hrp2/3-specific qPCR assay reported for 19/19 (100%) hrp2 deletions and 18/19 (94.7%) hrp3 deletions. Among Cambodian (n = 127) and Brazilian (n = 20) WGS datasets, which had not been previously analysed for hrp2/3 deletions, GC3 identified hrp2 deletions in three and four samples, and hrp3 deletions in 10 and 15 samples, respectively. Plots of hrp2/3 coding regions, grouped by year of sample collection, showed a decrease in median standardized coverage among Malawian samples (n = 150) suggesting the importance of a careful, properly controlled follow up to determine if an increase in frequency of deletions has occurred between 2007-2008 and 2014-2015. Among Malian (n = 90) samples, median standardized coverage was lower in 2002 than 2010, indicating widespread deletions present at the gene locus in 2002. CONCLUSIONS: The GC3 tool accurately classified hrp2/3 deletions and provided informative tables and figures to analyse targeted gene coverage. GC3 is an appropriate tool when performing preliminary and exploratory assessment of locus coverage data.


Asunto(s)
Histidina , Comportamiento del Uso de la Herramienta , Plasmodium falciparum/genética , Secuenciación Completa del Genoma , Genotipo
10.
Malar J ; 21(1): 328, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376966

RESUMEN

BACKGROUND: In 2017, several new housing districts were constructed on Bioko Island, Equatorial Guinea. This case study assessed the impact construction projects had on mosquito larval habitats and the effectiveness of larval source management in reducing malaria vector density within the surrounding area. METHODS: Anopheline larval presence was assessed at 11 new construction sites by the proportion of larval habitats containing Anopheline pupae and late instar larval stages. Bacillus thuringiensis israelensis (Bti) larvicide was applied weekly to nine locations for 30 weeks, while two locations received no larvicide and acted as controls. Adult mosquito density was monitored via human landing collections in adjacent communities of six construction sites, including the two control sites. RESULTS: The sites that received Bti had significantly lower observation rates of both pupae (3.2% vs. 18.0%; p < 0.001) and late instar Anopheles spp. mosquitoes (14.1 vs. 43.6%; p < 0.001) compared to the two untreated sites. Anopheles spp. accounted for 67% of mosquitoes collected with human landing collections and were captured at significantly lower levels in communities adjacent to treated construction sites compared to untreated sites (p < 0.001), with an estimated 38% reduction in human biting rate (IRR: 0.62, 95% CI IRR: 0.55, 0.69). Seven months after the start of the study, untreated sites were treated due to ethical concerns given results from treatment sties, necessitating immediate Bti application. The following week, the number of habitats, the proportion of larval sites with Anopheles spp. pupae, late instars, and adult biting rates in adjacent communities to these sites all decreased to comparable levels across all sites. CONCLUSION: Findings suggest larval source management represents an effective intervention to suppress mosquito populations during infrastructure development. Incorporating larval source management into ongoing and planned construction initiatives represents an opportunity to fine tune vector control in response to anthropogenetic changes. Ideally, this should become standard practice in malaria-endemic regions in order to reduce viable mosquito habitats that are common by-products of construction.


Asunto(s)
Anopheles , Bacillus thuringiensis , Malaria , Animales , Humanos , Anopheles/fisiología , Malaria/epidemiología , Control de Mosquitos/métodos , Larva , Remodelación Urbana , Mosquitos Vectores , Pupa , Ecosistema
11.
Malar J ; 21(1): 99, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331251

RESUMEN

BACKGROUND: Progress towards malaria elimination has stagnated, partly because infections persisting at low parasite densities comprise a large reservoir contributing to ongoing malaria transmission and are difficult to detect. This study compared the performance of an ultrasensitive rapid diagnostic test (uRDT) designed to detect low density infections to a conventional RDT (cRDT), expert microscopy using Giemsa-stained thick blood smears (TBS), and quantitative polymerase chain reaction (qPCR) during a controlled human malaria infection (CHMI) study conducted in malaria exposed adults (NCT03590340). METHODS: Blood samples were collected from healthy Equatoguineans aged 18-35 years beginning on day 8 after CHMI with 3.2 × 103 cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ Challenge, strain NF54) administered by direct venous inoculation. qPCR (18s ribosomal DNA), uRDT (Alere™ Malaria Ag P.f.), cRDT [Carestart Malaria Pf/PAN (PfHRP2/pLDH)], and TBS were performed daily until the volunteer became TBS positive and treatment was administered. qPCR was the reference for the presence of Plasmodium falciparum parasites. RESULTS: 279 samples were collected from 24 participants; 123 were positive by qPCR. TBS detected 24/123 (19.5% sensitivity [95% CI 13.1-27.8%]), uRDT 21/123 (17.1% sensitivity [95% CI 11.1-25.1%]), cRDT 10/123 (8.1% sensitivity [95% CI 4.2-14.8%]); all were 100% specific and did not detect any positive samples not detected by qPCR. TBS and uRDT were more sensitive than cRDT (TBS vs. cRDT p = 0.015; uRDT vs. cRDT p = 0.053), detecting parasitaemias as low as 3.7 parasites/µL (p/µL) (TBS and uRDT) compared to 5.6 p/µL (cRDT) based on TBS density measurements. TBS, uRDT and cRDT did not detect any of the 70/123 samples positive by qPCR below 5.86 p/µL, the qPCR density corresponding to 3.7 p/µL by TBS. The median prepatent periods in days (ranges) were 14.5 (10-20), 18.0 (15-28), 18.0 (15-20) and 18.0 (16-24) for qPCR, TBS, uRDT and cRDT, respectively; qPCR detected parasitaemia significantly earlier (3.5 days) than the other tests. CONCLUSIONS: TBS and uRDT had similar sensitivities, both were more sensitive than cRDT, and neither matched qPCR for detecting low density parasitaemia. uRDT could be considered an alternative to TBS in selected applications, such as CHMI or field diagnosis, where qualitative, dichotomous results for malaria infection might be sufficient.


Asunto(s)
Malaria , Plasmodium falciparum , Adolescente , Adulto , Pruebas Diagnósticas de Rutina/métodos , Guinea Ecuatorial , Humanos , Plasmodium falciparum/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven
12.
Am J Trop Med Hyg ; 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130487

RESUMEN

Plasmodium falciparum sporozoites (PfSPZ) Vaccine is composed of radiation-attenuated, aseptic, purified cryopreserved PfSPZ. Multiple clinical trials empirically assessing two to six doses have shown multi-dose priming (-two to four doses the first week) to be optimal for protection in both 4- and 16-week regimens. In this randomized, double-blind, normal saline (NS), placebo-controlled trial, four groups (G) of 18- to 32-year-old Equatoguineans received multi-dose priming regimens with or without a delayed final dose at 4 or 16 weeks (9 × 105 PfSPZ/dose). The regimens were G1: days 1, 3, 5, 7, and 113; G2: days 1, 3, 5, and 7; G3: days 1, 3, 5, 7, and 29; and G4: days 1, 8, and 29). All doses were 9 × 105 PfSPZ. Tolerability, safety, immunogenicity, and vaccine efficacy (VE) against homologous-controlled human malaria infection (CHMI) 6-7 weeks after vaccination were assessed to down-select the best regimen. All four regimens were safe and well tolerated, with no significant differences in adverse events (AEs) between vaccinees (N = 84) and NS controls (N = 20) or between regimens. Out of 19 controls, 13 developed Pf parasitemia by quantitative polymerase chain reaction (qPCR) after CHMI. Only the vaccine regimen administered on study days 1, 8, and 29 gave significant protection (7/21 vaccinees versus 13/19 controls infected, VE 51.3%, P = 0.03, Barnard's test, two-tailed). There were no significant differences in antibodies against Pf circumporozoite protein (PfCSP), a major SPZ antigen, between protected and nonprotected vaccinees or controls pre-CHMI. The six controls not developing Pf parasitemia had significantly higher antibodies to blood stage antigens Pf exported protein 1 (PfEXP1) and Pf merozoite surface protein 1 (PfMSP1) than the controls who developed parasitemia, suggesting naturally acquired immunity against Pf-limited infections in controls. This study identified a safe, protective, 4-week, multi-dose prime vaccination regimen for assessment in future trials of PfSPZ Vaccine.

13.
PLoS Negl Trop Dis ; 16(1): e0009798, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100277

RESUMEN

BACKGROUND: Regular and comprehensive epidemiological surveys of the filarial nematodes Mansonella perstans and Loa loa in children, adolescents and adults living across Bioko Island, Equatorial Guinea are lacking. We aimed to demonstrate that blood retained on malaria rapid diagnostic tests, commonly deployed for malaria surveys, could be used as a source of nucleic acids for molecular based detection of M. perstans and L. loa. We wanted to determine the positivity rate and distribution of filarial nematodes across different age groups and geographical areas as well as to understand level of co-infections with malaria in an asymptomatic population. METHODOLOGY: M. perstans, L. loa and Plasmodium spp. parasites were monitored by qPCR in a cross-sectional study using DNA extracted from a subset malaria rapid diagnostic tests (mRDTs) collected during the annual malaria indicator survey conducted on Bioko Island in 2018. PRINCIPAL FINDINGS: We identified DNA specific for the two filarial nematodes investigated among 8.2% (263) of the 3214 RDTs screened. Positivity rates of M. perstans and L. loa were 6.6% and 1.5%, respectively. M. perstans infection were more prominent in male (10.5%) compared to female (3.9%) survey participants. M. perstans parasite density and positivity rate was higher among older people and the population living in rural areas. The socio-economic status of participants strongly influenced the infection rate with people belonging to the lowest socio-economic quintile more than 3 and 5 times more likely to be L. loa and M. perstans infected, respectively. No increased risk of being co-infected with Plasmodium spp. parasites was observed among the different age groups. CONCLUSIONS/SIGNIFICANCE: We found otherwise asymptomatic individuals were infected with M. perstans and L. loa. Our study demonstrates that employing mRDTs probed with blood for malaria testing represents a promising, future tool to preserve and ship NAs at room temperature to laboratories for molecular, high-throughput diagnosis and genotyping of blood-dwelling nematode filarial infections. Using this approach, asymptomatic populations can be reached and surveyed for infectious diseases beyond malaria.


Asunto(s)
Coinfección/epidemiología , Loa/aislamiento & purificación , Malaria/epidemiología , Mansonella/aislamiento & purificación , Adolescente , Adulto , Animales , Niño , Coinfección/parasitología , Estudios Transversales , ADN de Helmintos , Guinea Ecuatorial/epidemiología , Femenino , Humanos , Loiasis/sangre , Loiasis/epidemiología , Malaria/sangre , Masculino , Mansoneliasis/sangre , Mansoneliasis/epidemiología , Persona de Mediana Edad , Plasmodium/aislamiento & purificación , Prevalencia , Factores Socioeconómicos
14.
Malar J ; 21(1): 23, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073934

RESUMEN

BACKGROUND: Surveillance programmes often use malaria rapid diagnostic tests (RDTs) to determine the proportion of the population carrying parasites in their peripheral blood to assess the malaria transmission intensity. Despite an increasing number of reports on false-negative and false-positive RDT results, there is a lack of systematic quality control activities for RDTs deployed in malaria surveillance programmes. METHODS: The diagnostic performance of field-deployed RDTs used for malaria surveys was assessed by retrospective molecular analysis of the blood retained on the tests. RESULTS: Of the 2865 RDTs that were collected in 2018 on Bioko Island and analysed in this study, 4.7% had a false-negative result. These false-negative RDTs were associated with low parasite density infections. In 16.6% of analysed samples, masked pfhrp2 and pfhrp3 gene deletions were identified, in which at least one Plasmodium falciparum strain carried a gene deletion. Among all positive RDTs analysed, 28.4% were tested negative by qPCR and therefore considered to be false-positive. Analysing the questionnaire data collected from the participants, this high proportion of false-positive RDTs could be explained by P. falciparum histidine rich protein 2 (PfHRP2) antigen persistence after recent malaria treatment. CONCLUSION: Malaria surveillance depending solely on RDTs needs well-integrated quality control procedures to assess the extent and impact of reduced sensitivity and specificity of RDTs on malaria control programmes.


Asunto(s)
Antígenos de Protozoos/análisis , Coinfección/diagnóstico , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Malaria/diagnóstico , Vigilancia de la Población , Proteínas Protozoarias/análisis , Coinfección/epidemiología , Guinea Ecuatorial/epidemiología , Reacciones Falso Positivas , Incidencia , Malaria/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Ácidos Nucleicos/análisis , Plasmodium falciparum/aislamiento & purificación , Plasmodium malariae/aislamiento & purificación , Plasmodium ovale/aislamiento & purificación , Estudios Retrospectivos
15.
PLOS Digit Health ; 1(5): e0000025, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36812503

RESUMEN

Public health interventions require evidence-based decision-making to maximize impact. Spatial decision support systems (SDSS) are designed to collect, store, process and analyze data to generate knowledge and inform decisions. This paper discusses how the use of a SDSS, the Campaign Information Management System (CIMS), to support malaria control operations on Bioko Island has impacted key process indicators of indoor residual spraying (IRS): coverage, operational efficiency and productivity. We used data from the last five annual IRS rounds (2017 to 2021) to estimate these indicators. IRS coverage was calculated as the percentage of houses sprayed per unit area, represented by 100x100 m map-sectors. Optimal coverage was defined as between 80% and 85%, and under and overspraying as coverage below 80% and above 85%, respectively. Operational efficiency was defined as the fraction of map-sectors that achieved optimal coverage. Daily productivity was expressed as the number of houses sprayed per sprayer per day (h/s/d). These indicators were compared across the five rounds. Overall IRS coverage (i.e. percent of total houses sprayed against the overall denominator by round) was highest in 2017 (80.2%), yet this round showed the largest proportion of oversprayed map-sectors (36.0%). Conversely, despite producing a lower overall coverage (77.5%), the 2021 round showed the highest operational efficiency (37.7%) and the lowest proportion of oversprayed map-sectors (18.7%). In 2021, higher operational efficiency was also accompanied by marginally higher productivity. Productivity ranged from 3.3 h/s/d in 2020 to 3.9 h/s/d in 2021 (median 3.6 h/s/d). Our findings showed that the novel approach to data collection and processing proposed by the CIMS has significantly improved the operational efficiency of IRS on Bioko. High spatial granularity during planning and deployment together with closer follow-up of field teams using real-time data supported more homogeneous delivery of optimal coverage while sustaining high productivity.

16.
Malar J ; 20(1): 433, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758840

RESUMEN

BACKGROUND: Insecticide-treated nets and indoor residual spraying of insecticides are used as the vector control interventions in the fight against malaria. Measuring the actual amount of deposits of insecticides on bed nets and walls is essential for evaluating the quality and effectiveness of the intervention. A colorimetric "Test Kit" designed for use as a screening tool, able to detect the type II pyrethroids on fabrics and sprayed walls, was used for the first time to detect deltamethrin on long-lasting insecticidal nets (LLINs) deployed on Bioko Island, Equatorial Guinea. METHODS: LLINs were analysed using the colorimetric Test Kit performed in situ, which leads to the formation of an orange-red solution whose depth of colour indicates the amount of type II pyrethroid on the net. The kit results were validated by measuring the amount of extracted insecticide using high-performance liquid chromatography (HPLC) with diode array detection (DAD). RESULTS: Deltamethrin concentration was determined for 130 LLINs by HPLC-DAD. The deltamethrin concentration of these nets exhibited a significant decrease with the age of the net from 65 mg/m2 (< 12 months of use) to 31 mg/m2 (> 48 months; p < 0.001). Overall, 18% of the nets being used in households had < 15 mg/m2 of deltamethrin, thus falling into the "Fail" category as assessed by the colorimetric Test Kit. This was supported by determining the bio-efficacy of the nets using the WHO recommended cone bioassays. The Test Kit was field evaluated in situ and found to be rapid, accurate, and easy to use by people without laboratory training. The Test Kit was shown to have a reliable linear relationship between the depth of colour produced and deltamethrin concentration (R2 = 0.9135). CONCLUSION: This study shows that this colorimetric test was a reliable method to assess the insecticidal content of LLINs under operational conditions. The Test Kit provides immediate results and offers a rapid, inexpensive, field-friendly alternative to the complicated and costly methods such as HPLC and WHO cone bioassays which also need specialist staff. Thus, enabling National Malaria Control Programmes to gain access to effective and affordable monitoring tools for use in situ.


Asunto(s)
Colorimetría/normas , Mosquiteros Tratados con Insecticida/normas , Insecticidas/análisis , Nitrilos/análisis , Piretrinas/análisis , Animales , Bioensayo , Cromatografía Líquida de Alta Presión , Guinea Ecuatorial , Femenino , Humanos , Islas , Reproducibilidad de los Resultados , Factores de Tiempo
17.
PLoS One ; 16(9): e0248646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34469444

RESUMEN

BACKGROUND: Geospatial datasets of population are becoming more common in models used for health policy. Publicly-available maps of human population make a consistent picture from inconsistent census data, and the techniques they use to impute data makes each population map unique. Each mapping model explains its methods, but it can be difficult to know which map is appropriate for which policy work. High quality census datasets, where available, are a unique opportunity to characterize maps by comparing them with truth. METHODS: We use census data from a bed-net mass-distribution campaign on Bioko Island, Equatorial Guinea, conducted by the Bioko Island Malaria Elimination Program as a gold standard to evaluate LandScan (LS), WorldPop Constrained (WP-C) and WorldPop Unconstrained (WP-U), Gridded Population of the World (GPW), and the High-Resolution Settlement Layer (HRSL). Each layer is compared to the gold-standard using statistical measures to evaluate distribution, error, and bias. We investigated how map choice affects burden estimates from a malaria prevalence model. RESULTS: Specific population layers were able to match the gold-standard distribution at different population densities. LandScan was able to most accurately capture highly urban distribution, HRSL and WP-C matched best at all other lower population densities. GPW and WP-U performed poorly everywhere. Correctly capturing empty pixels is key, and smaller pixel sizes (100 m vs 1 km) improve this. Normalizing areas based on known district populations increased performance. The use of differing population layers in a malaria model showed a disparity in results around transition points between endemicity levels. DISCUSSION: The metrics in this paper, some of them novel in this context, characterize how these population maps differ from the gold standard census and from each other. We show that the metrics help understand the performance of a population map within a malaria model. The closest match to the census data would combine LandScan within urban areas and the HRSL for rural areas. Researchers should prefer particular maps if health calculations have a strong dependency on knowing where people are not, or if it is important to categorize variation in density within a city.


Asunto(s)
Malaria/epidemiología , Densidad de Población , Guinea Ecuatorial/epidemiología , Humanos , Mapas como Asunto , Plasmodium falciparum , Población Urbana/estadística & datos numéricos
18.
Malar J ; 20(1): 359, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461902

RESUMEN

BACKGROUND: Malaria elimination is the goal for Bioko Island, Equatorial Guinea. Intensive interventions implemented since 2004 have reduced prevalence, but progress has stalled in recent years. A challenge for elimination has been malaria infections in residents acquired during travel to mainland Equatorial Guinea. The present article quantifies how off-island contributes to remaining malaria prevalence on Bioko Island, and investigates the potential role of a pre-erythrocytic vaccine in making further progress towards elimination. METHODS: Malaria transmission on Bioko Island was simulated using a model calibrated based on data from the Malaria Indicator Surveys (MIS) from 2015 to 2018, including detailed travel histories and malaria positivity by rapid-diagnostic tests (RDTs), as well as geospatial estimates of malaria prevalence. Mosquito population density was adjusted to fit local transmission, conditional on importation rates under current levels of control and within-island mobility. The simulations were then used to evaluate the impact of two pre-erythrocytic vaccine distribution strategies: mass treat and vaccinate, and prophylactic vaccination for off-island travellers. Lastly, a sensitivity analysis was performed through an ensemble of simulations fit to the Bayesian joint posterior probability distribution of the geospatial prevalence estimates. RESULTS: The simulations suggest that in Malabo, an urban city containing 80% of the population, there are some pockets of residual transmission, but a large proportion of infections are acquired off-island by travellers to the mainland. Outside of Malabo, prevalence was mainly attributable to local transmission. The uncertainty in the local transmission vs. importation is lowest within Malabo and highest outside. Using a pre-erythrocytic vaccine to protect travellers would have larger benefits than using the vaccine to protect residents of Bioko Island from local transmission. In simulations, mass treatment and vaccination had short-lived benefits, as malaria prevalence returned to current levels as the vaccine's efficacy waned. Prophylactic vaccination of travellers resulted in longer-lasting reductions in prevalence. These projections were robust to underlying uncertainty in prevalence estimates. CONCLUSIONS: The modelled outcomes suggest that the volume of malaria cases imported from the mainland is a partial driver of continued endemic malaria on Bioko Island, and that continued elimination efforts on must account for human travel activity.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Malaria/prevención & control , Viaje , Guinea Ecuatorial/epidemiología , Humanos , Malaria/epidemiología , Prevalencia
19.
Malar J ; 20(1): 313, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34247643

RESUMEN

BACKGROUND: Prevalence of falciparum malaria on Bioko Island remains high despite sustained, intensive control. Progress may be hindered by high proportions of subpatent infections that are not detected by rapid diagnostic tests (RDT) but contribute to onward transmission, and by imported infections. Better understanding of the relationship between subpatent infections and RDT-detected infections, and whether this relationship is different from imported versus locally acquired infections, is imperative to better understand the sources of infection and mechanisms of transmission to tailor more effective interventions. METHODS: Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed on a sub-set of samples from the 2015 Malaria Indicator Survey to identify subpatent infections. Households with RDT(+) individuals were matched 1:4 with households with no RDT(+) individuals. The association between living in a household with an RDT(+) individual and having a subpatent infection was evaluated using multivariate hierarchical logistic regression models with inverse probability weights for selection. To evaluate possible modification of the association by potential importation of the RDT(+) case, the analysis was repeated among strata of matched sets based on the reported eight-week travel history of the RDT(+) individual(s). RESULTS: There were 142 subpatent infections detected in 1,400 individuals (10.0%). The prevalence of subpatent infections was higher in households with versus without an RDT(+) individual (15.0 vs 9.1%). The adjusted prevalence odds of subpatent infection were 2.59-fold greater (95% CI: 1.31, 5.09) for those in a household with an RDT(+) individual compared to individuals in a household without RDT(+) individuals. When stratifying by travel history of the RDT(+) individual, the association between subpatent infections and RDT(+) infections was stronger in the strata in which the RDT(+) individual(s) had not recently travelled (adjusted prevalence odds ratio (aPOR) 2.95; 95% CI:1.17, 7.41), and attenuated in the strata in which recent travel was reported (aPOR 1.76; 95% CI: 0.54, 5.67). CONCLUSIONS: There is clustering of subpatent infections around RDT(+) individual(s) when both imported and local infection are suspected. Future control strategies that aim to treat whole households in which an RDT(+) individual is found may target a substantial portion of infections that would otherwise not be detected.


Asunto(s)
Composición Familiar , Malaria Falciparum/epidemiología , Viaje , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Pruebas Diagnósticas de Rutina , Guinea Ecuatorial/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Malaria Falciparum/diagnóstico , Masculino , Persona de Mediana Edad , Prevalencia , Adulto Joven
20.
Malar J ; 20(1): 322, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34284778

RESUMEN

BACKGROUND: Extensive malaria control measures have been implemented on Bioko Island, Equatorial Guinea over the past 16 years, reducing parasite prevalence and malaria-related morbidity and mortality, but without achieving elimination. Malaria vaccines offer hope for reducing the burden to zero. Three phase 1/2 studies have been conducted successfully on Bioko Island to evaluate the safety and efficacy of whole Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccines. A large, pivotal trial of the safety and efficacy of the radiation-attenuated Sanaria® PfSPZ Vaccine against P. falciparum is planned for 2022. This study assessed the incidence of malaria at the phase 3 study site and characterized the influence of socio-demographic factors on the burden of malaria to guide trial design. METHODS: A cohort of 240 randomly selected individuals aged 6 months to 45 years from selected areas of North Bioko Province, Bioko Island, was followed for 24 weeks after clearance of parasitaemia. Assessment of clinical presentation consistent with malaria and thick blood smears were performed every 2 weeks. Incidence of first and multiple malaria infections per person-time of follow-up was estimated, compared between age groups, and examined for associated socio-demographic risk factors. RESULTS: There were 58 malaria infection episodes observed during the follow up period, including 47 first and 11 repeat infections. The incidence of malaria was 0.25 [95% CI (0.19, 0.32)] and of first malaria was 0.23 [95% CI (0.17, 0.30)] per person per 24 weeks (0.22 in 6-59-month-olds, 0.26 in 5-17-year-olds, 0.20 in 18-45-year-olds). Incidence of first malaria with symptoms was 0.13 [95% CI (0.09, 0.19)] per person per 24 weeks (0.16 in 6-59-month-olds, 0.10 in 5-17-year-olds, 0.11 in 18-45-year-olds). Multivariate assessment showed that study area, gender, malaria positivity at screening, and household socioeconomic status independently predicted the observed incidence of malaria. CONCLUSION: Despite intensive malaria control efforts on Bioko Island, local transmission remains and is spread evenly throughout age groups. These incidence rates indicate moderate malaria transmission which may be sufficient to support future larger trials of PfSPZ Vaccine. The long-term goal is to conduct mass vaccination programmes to halt transmission and eliminate P. falciparum malaria.


Asunto(s)
Malaria Falciparum/epidemiología , Adolescente , Adulto , Niño , Preescolar , Guinea Ecuatorial/epidemiología , Humanos , Incidencia , Lactante , Malaria Falciparum/parasitología , Factores Socioeconómicos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...