Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 1(4): e101, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33826805

RESUMEN

The localization of a protein provides important information about its biological functions. The visualization of proteins by immunofluorescence has become an essential approach in cell biology. Here, we describe an easy-to-follow immunofluorescence protocol to localize proteins in whole-mount tissues of maize (Zea mays) and Arabidopsis. We present the whole-mount immunofluorescence procedure using maize ear primordia and Arabidopsis inflorescence apices as examples, followed by tips and suggestions for each step. In addition, we provide a supporting protocol to describe the use of an ImageJ plug-in to analyze colocalization. This protocol has been optimized to observe proteins in 2-5 mm maize ear primordia or in developing Arabidopsis inflorescence apices; however, it can be used as a reference to perform whole-mount immunofluorescence in other plant tissues and species. © 2021 Wiley Periodicals LLC. Basic Protocol: Whole-mount immunofluorescence for maize and Arabidopsis shoot apices Support Protocol: Measure colocalization by JACoP plugin in ImageJ.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Técnica del Anticuerpo Fluorescente , Inflorescencia , Zea mays
2.
Int J Dev Biol ; 65(4-5-6): 383-394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32930384

RESUMEN

Mediator is a conserved transcriptional co-activator that links transcription factors bound at enhancer elements to RNA Polymerase II. Mediator-RNA Polymerase II interactions can be sterically hindered by the Cyclin Dependent Kinase 8 (CDK8) module, a submodule of Mediator that acts to repress transcription in response to discrete cellular and environmental cues. The CDK8 module is conserved in all eukaryotes and consists of 4 proteins: CDK8, CYCLIN C (CYCC), MED12, and MED13. In this study, we have characterized the CDK8 module of Mediator in maize using genomic, molecular and functional resources. The maize genome contains single copy genes for Cdk8, CycC, and Med13, and two genes for Med12. Analysis of expression data for the CDK8 module demonstrated that all five genes are broadly expressed in maize tissues, and change their expression in response to phosphate and nitrogen limitation. We performed Dissociation (Ds) insertional mutagenesis, recovering two independent insertions in the ZmMed12a gene, one of which produces a truncated transcript. Our molecular identification of the maize CDK8 module, assays of CDK8 module expression under nutrient limitation, and characterization of transposon insertions in ZmMed12a establish the basis for molecular and functional studies of the role of these important transcriptional regulators in development and nutrient homeostasis in Zea mays.


Asunto(s)
Quinasa 8 Dependiente de Ciclina , Genes de Plantas , Zea mays , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Elementos Transponibles de ADN , Mutagénesis , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Zea mays/genética
3.
Methods Mol Biol ; 1675: 419-441, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29052205

RESUMEN

During early embryo development, profound changes in chromatin structure and regulation take place. It is difficult to study these changes in plant embryos however, largely because of their relative inaccessibility, which impedes the application of current epigenomic and biochemistry protocols. To circumvent this issue and to analyze the epigenetic status of the embryo at both the cellular and subcellular level, we describe here a simple method to immunolocalize chromatin marks in whole mount early Arabidopsis embryos, either within maternal tissues or isolated from seeds. We show that this protocol can be combined with fluorescent protein markers, allowing for the simultaneous detection of several chromatin components and/or cell fate markers. This new protocol will facilitate deciphering the epigenetic circuits controlling early embryogenesis in plants.


Asunto(s)
Arabidopsis/embriología , Cromatina/metabolismo , Epigenómica/métodos , Semillas/metabolismo , Arabidopsis/química , Cromatina/química , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Código de Histonas , Histonas/metabolismo , Conformación Molecular , Semillas/química
4.
Curr Opin Plant Biol ; 27: 29-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26051360

RESUMEN

Parent-of-origin dependent gene expression refers to differential activity of alleles inherited from the egg and sperm. In plants, zygotic genome activation (ZGA) and gene imprinting are two examples of this phenomenon, both of which occur during seed development. As its name implies, ZGA is a genome-wide process that occurs in embryos during the first few days after fertilization. Evidence exists that maternal alleles initially predominate during ZGA, although most genes also show some paternal activity. By contrast, imprinting can be defined as a bias in gene expression that lasts beyond the first few days of seed development. Hundreds of imprinted genes have been discovered in the endosperm, and a few have been described in the embryo. This review discusses recent advances in our understanding of the phenomena and mechanisms of ZGA and imprinting in seeds, with an emphasis on embryo development. Important unanswered questions and areas for future research are highlighted.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Impresión Genómica , Plantas/embriología , Plantas/genética , Regulación del Desarrollo de la Expresión Génica , Semillas/embriología , Semillas/genética
5.
Proc Natl Acad Sci U S A ; 111(45): 16166-71, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25344531

RESUMEN

Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cromosomas de las Plantas/metabolismo , Heterocromatina/metabolismo , Chaperonas Moleculares/metabolismo , ARN de Planta/biosíntesis , ARN Ribosómico/biosíntesis , Sumoilación/fisiología , ATPasas Asociadas con Actividades Celulares Diversas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Centrómero/genética , Cromosomas de las Plantas/genética , ADN de Plantas/genética , ADN de Plantas/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Sitios Genéticos/fisiología , Heterocromatina/genética , Humanos , Chaperonas Moleculares/genética , Polen/genética , Polen/metabolismo , ARN de Planta/genética , ARN Ribosómico/genética , Ribosomas/genética , Ribosomas/metabolismo
6.
Nature ; 514(7524): 624-7, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25209660

RESUMEN

Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Genes de Plantas/genética , Genoma de Planta/genética , Semillas/embriología , Semillas/genética , Alelos , Proteínas de Arabidopsis/genética , Citidililtransferasa de Colina-Fosfato/genética , Fertilización , Regulación de la Expresión Génica de las Plantas , Hibridación Genética/genética , Fenotipo , Proteínas Represoras/genética , Transcriptoma/genética , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
7.
J Exp Bot ; 63(10): 3829-42, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442422

RESUMEN

The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Óvulo Vegetal/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(19): 8042-7, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21518889

RESUMEN

In double fertilization, the vegetative cell of the male gametophyte (pollen) germinates and forms a pollen tube that brings to the female gametophyte two sperm cells that fertilize the egg and central cell to form the embryo and endosperm, respectively. The 5-methylcytosine DNA glycosylase DEMETER (DME), expressed in the central cell, is required for maternal allele demethylation and gene imprinting in the endosperm. By contrast, little is known about the function of DME in the male gametophyte. Here we show that reduced transmission of the paternal mutant dme allele in certain ecotypes reflects, at least in part, defective pollen germination. DME RNA is detected in pollen, but not in isolated sperm cells, suggesting that DME is expressed in the vegetative cell. Bisulfite sequencing experiments show that imprinted genes (MEA and FWA) and a repetitive element (Mu1a) are hypomethylated in the vegetative cell genome compared with the sperm genome, which is a process that requires DME. Moreover, we show that MEA and FWA RNA are detectable in pollen, but not in isolated sperm cells, suggesting that their expression occurs primarily in the vegetative cell. These results suggest that DME is active and demethylates similar genes and transposons in the genomes of the vegetative and central cells in the male and female gametophytes, respectively. Although the genome of the vegetative cell does not participate in double fertilization, its DME-mediated demethylation is important for male fertility and may contribute to the reconfiguration of the methylation landscape that occurs in the vegetative cell genome.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , N-Glicosil Hidrolasas/metabolismo , Transactivadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Metilación de ADN , ADN de Plantas/genética , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Impresión Genómica , Germinación/genética , Germinación/fisiología , Mutación , N-Glicosil Hidrolasas/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Polen/genética , Polen/metabolismo , Transactivadores/genética
9.
Plant Cell ; 22(10): 3249-67, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21037104

RESUMEN

Apomictic plants reproduce asexually through seeds by avoiding both meiosis and fertilization. Although apomixis is genetically regulated, its core genetic component(s) has not been determined yet. Using profiling experiments comparing sexual development in maize (Zea mays) to apomixis in maize-Tripsacum hybrids, we identified six loci that are specifically downregulated in ovules of apomictic plants. Four of them share strong homology with members of the RNA-directed DNA methylation pathway, which in Arabidopsis thaliana is involved in silencing via DNA methylation. Analyzing loss-of-function alleles for two maize DNA methyltransferase genes belonging to that subset, dmt102 and dmt103, which are downregulated in the ovules of apomictic plants and are homologous to the Arabidopsis CHROMOMETHYLASEs and DOMAINS REARRANGED METHYLTRANSFERASE families, revealed phenotypes reminiscent of apomictic development, including the production of unreduced gametes and formation of multiple embryo sacs in the ovule. Loss of DMT102 activity in ovules resulted in the establishment of a transcriptionally competent chromatin state in the archesporial tissue and in the egg cell that mimics the chromatin state found in apomicts. Interestingly, dmt102 and dmt103 expression in the ovule is found in a restricted domain in and around the germ cells, indicating that a DNA methylation pathway active during reproduction is essential for gametophyte development in maize and likely plays a critical role in the differentiation between apomictic and sexual reproduction.


Asunto(s)
Metilación de ADN , Gametogénesis en la Planta , Óvulo Vegetal/crecimiento & desarrollo , Zea mays/genética , Cromatina/metabolismo , ADN de Plantas/metabolismo , ADN-Citosina Metilasas/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Histonas/metabolismo , Metiltransferasas/metabolismo , Mutación , Óvulo Vegetal/genética , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/genética , Reproducción Asexuada , Zea mays/embriología
10.
Proc Natl Acad Sci U S A ; 102(47): 17231-6, 2005 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-16286646

RESUMEN

Chromatin-remodeling factors regulate the establishment of transcriptional programs during plant development. Although 42 genes encoding members of the SWI2/SNF2 family have been identified in Arabidopsis thaliana, <10 have been assigned a precise function on the basis of a mutant phenotype, and none have been shown to play a specific role during the gametophytic phase of the plant life cycle. A. thaliana chromatin-remodeling protein 11 (CHR11) encodes an imitation of switch (ISWI)-like chromatin-remodeling protein abundantly expressed during female gametogenesis and embryogenesis in Arabidopsis. To determine the function of CHR11 in wild-type plants, we introduced a hairpin construct leading to the production of double-stranded RNA, which specifically degraded the endogenous CHR11 mRNA by RNA interference (RNAi). Transcription of the RNAi-inducing hairpin RNA was driven by either a constitutive cauliflower mosaic virus 35S promoter (CaMV35S) acting at most stages of the sporophytic phase or a newly identified specific promoter acting at the onset of the female gametophytic phase (pFM1). All adult transformants that constitutively lacked sporophytic CHR11 activity showed reduced plant height and small cotyledonary embryos with limited cell expansion. In contrast, RNAi lines in which CHR11 was specifically silenced at the onset of female gametogenesis (megagametogenesis) had normal height and embryo size but had defective female gametophytes arrested before the completion of the mitotic haploid nuclear divisions. These results show that CHR11 is essential for haploid nuclear proliferation during megagametogenesis and cell expansion during the sporophytic phase, demonstrating the functional versatility of SWI2/SNF2 chromatin-remodeling factors during both generations of the plant life cycle.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , División del Núcleo Celular/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Proteínas Cromosómicas no Histona/fisiología , Gametogénesis/fisiología , Adenosina Trifosfatasas , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , División del Núcleo Celular/genética , Tamaño de la Célula , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/biosíntesis , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/fisiología , Gametogénesis/genética , Haploidia , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Esporas/citología , Esporas/genética , Esporas/fisiología , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA