Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
BMC Microbiol ; 23(1): 309, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884896

RESUMEN

BACKGROUND: Stress-tolerant yeasts are highly desirable for cost-effective bioprocessing. Several strategies have been documented to develop robust yeasts, such as genetic and metabolic engineering, artificial selection, and natural selection strategies, among others. However, the significant drawbacks of such techniques have motivated the exploration of naturally occurring stress-tolerant yeasts. We previously explored the biodiversity of non-conventional dung beetle-associated yeasts from extremophilic and pristine environments in Botswana (Nwaefuna AE et.al., Yeast, 2023). Here, we assessed their tolerance to industrially relevant stressors individually, such as elevated concentrations of osmolytes, organic acids, ethanol, and oxidizing agents, as well as elevated temperatures. RESULTS: Our findings suggest that these dung beetle-associated yeasts tolerate various stresses comparable to those of the robust bioethanol yeast strain, Saccharomyces cerevisiae (Ethanol Red™). Fifty-six percent of the yeast isolates were tolerant of temperatures up to 42 °C, 12.4% of them could tolerate ethanol concentrations up to 9% (v/v), 43.2% of them were tolerant to formic acid concentrations up to 20 mM, 22.7% were tolerant to acetic acid concentrations up to 45 mM, 34.0% of them could tolerate hydrogen peroxide up to 7 mM, and 44.3% of the yeasts could tolerate osmotic stress up to 1.5 M. CONCLUSION: The ability to tolerate multiple stresses is a desirable trait in the selection of novel production strains for diverse biotechnological applications, such as bioethanol production. Our study shows that the exploration of natural diversity in the search for stress-tolerant yeasts is an appealing approach for the development of robust yeasts.


Asunto(s)
Saccharomyces cerevisiae , Levaduras , Saccharomyces cerevisiae/metabolismo , Levaduras/genética , Levaduras/metabolismo , Etanol/metabolismo , Presión Osmótica , Temperatura , Microbiología Industrial/métodos , Fermentación
2.
Front Plant Sci ; 14: 1125560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265632

RESUMEN

Climate change is a major concern in agriculture; in grapevine production, climate change can affect yield and wine quality as they depend on the complex interactions between weather, plant material, and viticultural techniques. Wine characteristics are strongly influenced by microclimate of the canopy affecting primary and secondary metabolites of the grapevine. Air temperature and water availability can influence sugar and acid concentration in grapes and relative wines, and their content of volatile compounds such as norisoprenoids. This becomes relevant in sparkling wine production where grapes are generally harvested at a relatively low pH, high acidity, and low sugar content and where the norisoprenoids significantly contributes to the final aroma of the wine. The effect of climate change on grapevine and wine, therefore, calls for the implementation of on-field adaptation strategies. Among them canopy management through leaf removal and shading have been largely investigated in the wine growing sector. The present study, conducted over 4 years (2010-2013) aims at investigating how leaf removal and artificial shading strategies affect grape maturation, must quality and the production of norisoprenoids, analyzed using an untargeted approach, in sparkling wine. Specifically, this paper investigates the effect of meteorological conditions (i.e., water availability and temperatures) and the effect of leaf removal and shading on Vitis vinifera L. cv. Chardonnay and Pinot noir, which are suitable to produce sparkling wine in the DOCG Franciacorta wine growing area (Lombardy, Italy). The effect of leaf removal and shading practices on norisoprenoids has been the focus of the study. No defoliation and artificial shading treatments play an important role in the preservation of the acidity in warm seasons and this suggests calibrating defoliation activities in relation to the meteorological trend without standardized procedures. This is particularly relevant in the case of sparkling wine, where the acidity is essential to determine wine quality. The enhanced norisoprenoid aromas obtained with a total defoliation represent a further element to direct defoliation and shading strategies. The obtained results increase knowledge about the effect of different defoliation and artificial shading applications in relation to meteorological condition supporting the management decision-making in the Franciacorta wine growing area.

4.
J Cyst Fibros ; 22(4): 680-682, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088636

RESUMEN

We report here how the triple combination of drugs elexacaftor/tezacaftor/ivacaftor (ETI) alters the balance of the de-novo synthethic pathway of sphingolipids in primary cells of human bronchial epithelium. The treatment with ETI roughly doubles the levels of dihydrosphingolipids, possibly by modulating the delta(4)-desaturase enzymes that convert dihydroceramides into ceramides. This appears to be an off-target effect of ETI, since it occurs in a genotype-independent manner, for both cystic fibrosis (CF) and non-CF subjects.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Ceramidas , Genotipo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Benzodioxoles , Aminofenoles , Mutación
5.
Genes Nutr ; 18(1): 7, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076809

RESUMEN

The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.

6.
Yeast ; 40(5-6): 182-196, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37096317

RESUMEN

Yeast-insect interactions are increasingly becoming an attractive source of discovery for previously unknown, unique, diverse, and industrially relevant yeast species. Despite a wealth of studies that have recently focused on yeasts in symbiotic association with Hymenopteran insects, yeasts associated with Coleopteran insects, such as lignocellulosic-rich dung-dependent beetles, remain poorly studied. Trends in yeast discovery suggest that species richness and diversity can be attributed to the ecological niche of the insect. Here, we considered the potential of dung beetles inhabiting the extreme environments of Botswana, characterized by desert-like conditions (semi-arid to arid and hot) as well as protected pristine environments, as possible attribute niches that can shape the extremophilic and diverse life history strategies of yeasts. We obtained a total of 97 phylogenetically diverse yeast isolates from six species of dung beetles from Botswana's unexplored environments, representing 19 species belonging to 11 genera. The findings suggest that the guts of dung beetles are a rich niche for non-Saccharomyces yeast species. Meyerozyma and Pichia were the most dominant genera associated with dung beetles, representing 55% (53 out of 97) of the yeast isolates in our study. Trichosporon and Cutaneotrichosporon genera represented 32% (31 out of 97) of the isolates. The remaining isolates belonged to Apiotrichum, Candida, Diutina, Naganishia, Rhodotorula, and Wickerhamiella genera (12 out of 97). We found out that about 62% (60 out of 97) of the isolates were potentially new species because of their low internal transcribed spacer (ITS) sequence similarity when compared to the most recent optimal species delineation threshold. A single isolate was unidentifiable using the ITS sequences. Using an in silico polymerase chain reaction-restriction fragment length polymorphism approach, we revealed that there was genetic diversity within isolates of the same species. Our results contribute to the knowledge and understanding of the diversity of dung beetle-associated yeasts.


Asunto(s)
Escarabajos , Animales , Botswana , Levaduras/genética , Ecosistema , Candida , Biodiversidad
7.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835477

RESUMEN

The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes' defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, acting as structural barriers in the cell wall that limit pathogen access or as signaling molecules after stress responses that may regulate innate plant immunity. To unravel and better understand their involvement in plant defense, we used a novel approach of ultra-high performance liquid chromatography (UHPLC)-MS/MS to study how E. necator infection changes the lipid profile of genotypes with different sources of resistance, including BC4 (Run1), "Kishmish vatkhana" (Ren1), F26P92 (Ren3; Ren9), and "Teroldego" (a susceptible genotype), at 0, 24, and 48 hpi. The lipidome alterations were most visible at 24 hpi for BC4 and F26P92, and at 48 hpi for "Kishmish vatkhana". Among the most abundant lipids in grapevine leaves were the extra-plastidial lipids: glycerophosphocholine (PCs), glycerophosphoethanolamine (PEs) and the signaling lipids: glycerophosphates (Pas) and glycerophosphoinositols (PIs), followed by the plastid lipids: glycerophosphoglycerols (PGs), monogalactosyldiacylglycerols (MGDGs), and digalactosyldiacylglycerols (DGDGs) and, in lower amounts lyso-glycerophosphocholines (LPCs), lyso-glycerophosphoglycerols (LPGs), lyso-glycerophosphoinositols (LPIs), and lyso-glycerophosphoethanolamine (LPEs). Furthermore, the three resistant genotypes had the most prevalent down-accumulated lipid classes, while the susceptible genotype had the most prevalent up-accumulated lipid classes.


Asunto(s)
Vitis , Vitis/genética , Lipidómica , Espectrometría de Masas en Tándem , Lípidos , Enfermedades de las Plantas/microbiología
8.
Food Chem ; 410: 135360, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36628919

RESUMEN

The aim of this paper is to provide a detailed characterisation of grape lipidome. To achieve this objective, it starts by describing a pipeline implemented in R software to allow the semi-automatic annotation of the detected lipid species. It also provides an extensive description of the different properties of each molecule (such as retention time dependencies, mass accuracy, adduct formation and fragmentation patterns), which allowed the annotations to be made more accurately. Most annotated lipids in the grape samples were (lyso)glycerophospholipids and glycerolipids, although a few free fatty acids, hydroxyceramides and sitosterol esters were also observed. The proposed pipeline also allowed the identification of a series of methylated glycerophosphates never previously observed in grapes. The current results highlight the importance of expanding chemical analyses beyond the classical lipid categories.


Asunto(s)
Lípidos , Vitis , Lípidos/química , Vitis/química , Lipidómica/métodos , Espectrometría de Masas en Tándem/métodos , Ácidos Grasos no Esterificados
9.
Antioxidants (Basel) ; 11(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36358537

RESUMEN

The increasing prevalence of obesity worldwide has promoted research on human metabolism and foods such as sofrito, a tomato and olive oil-based sauce from the Mediterranean diet, has shown beneficial effects on obesity and related complications. Sofrito has been associated with better cardiovascular health, metabolic syndrome, and anti-inflammatory effects. The aim of this study was to understand how sofrito intake could contribute to the control of energy metabolism in obese rats. For this purpose, integrative untargeted lipidomics, metabolomics, and targeted gene expression approaches were used in the liver and adipose tissue to identify metabolic changes and the mechanism of action promoted by sofrito intake. A new biomarker was identified in the liver, butanediol glucuronide, an indicator of ketogenic activation and lipid oxidation after the sofrito intervention. Gene expression analysis revealed an increase in the uptake and liver oxidation of lipids for energy production and ketogenesis activation as fuel for other tissues in sofrito-fed animals. Sofrito altered the lipidomic profile in the fat depots of obese rats. This multiomics study identifies a new biomarker linked to the beneficial actions of sofrito against obesity and provides further insight into the beneficial effect of the Mediterranean diet components.

10.
Anal Bioanal Chem ; 414(5): 1841-1855, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35028688

RESUMEN

Untargeted liquid chromatographic-high-resolution mass spectrometric (LC-HRMS) metabolomics for potential exposure marker (PEM) discovery in nutrikinetic studies generates complex outputs. The correct selection of statistically significant PEMs is a crucial analytical step for understanding nutrition-health interactions. Hence, in this paper, different chemometric selection workflows for PEM discovery, using multivariate or univariate parametric or non-parametric data analyses, were comparatively tested and evaluated. The PEM selection protocols were applied to a small-sample-size untargeted LC-HRMS study of a longitudinal set of serum samples from 20 volunteers after a single intake of (poly)phenolic-rich Vaccinium myrtillus and Vaccinium corymbosum supplements. The non-parametric Games-Howell test identified a restricted group of significant features, thus minimizing the risk of false-positive retention. Among the forty-seven PEMs exhibiting a statistically significant postprandial kinetics, twelve were successfully annotated as purine pathway metabolites, benzoic and benzodiol metabolites, indole alkaloids, and organic and fatty acids, and five (i.e. octahydro-methyl-ß-carboline-dicarboxylic acid, tetrahydro-methyl-ß-carboline-dicarboxylic acid, citric acid, caprylic acid, and azelaic acid) were associated to Vaccinium berry consumption for the first time. The analysis of the area under the curve of the longitudinal dataset highlighted thirteen statistically significant PEMs discriminating the two interventions, including four intra-intervention relevant metabolites (i.e. abscisic acid glucuronide, catechol sulphate, methyl-catechol sulphate, and α-hydroxy-hippuric acid). Principal component analysis and sample classification through linear discriminant analysis performed on PEM maximum intensity confirmed the discriminating role of these PEMs.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Vaccinium/química , Adulto , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polifenoles/sangre , Polifenoles/orina , Método Simple Ciego
11.
J Microbiol Biotechnol ; 32(3): 307-316, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-34866127

RESUMEN

Yeasts play an important role in spontaneous fermentation of traditional alcoholic beverages. Our previous study revealed that a mixed-consortia of both Saccharomyces and non-Saccharomyces yeasts were responsible for fermentation of khadi, a popular, non-standardized traditional beverage with an immense potential for commercialization in Botswana. Functional characterization of isolated fermenting yeasts from mixed consortia is an indispensable step towards the selection of potential starter cultures for commercialization of khadi. In this study, we report the characterization of 13 khadi isolates for the presence of brewing-relevant phenotypes such as their fermentative capacity, ability to utilize a range of carbon sources and their ability to withstand brewing-associated stresses, as a principal step towards selection of starter cultures. Khadi isolates such as Saccharomyces cerevisiae, Saccharomycodes ludwigii and Candida ethanolica showed good brewing credentials but Lachancea fermentati emerged as the isolate with the best brewing attributes with a potential as a starter culture. However, we were then prompted to investigate the potential of L. fermentati to influence the fruity aromatic flavor, characteristic of khadi. The aroma components of 18 khadi samples were extracted using headspace solid phase micro-extraction (HSSPME) and identified using a GC-MS. We detected esters as the majority of volatile compounds in khadi, typical of the aromatic signature of both khadi and L. fermentati associated fermentations. This work shows that L. fermentati has potential for commercial production of khadi.


Asunto(s)
Saccharomyces cerevisiae , Levaduras , Bebidas Alcohólicas , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Saccharomyces cerevisiae/genética , Levaduras/genética
12.
Metabolites ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34940585

RESUMEN

Lipids play many essential roles in living organisms, which accounts for the great diversity of these amphiphilic molecules within the individual lipid classes, while their composition depends on intrinsic and extrinsic factors. Recent developments in mass spectrometric methods have significantly contributed to the widespread application of the liquid chromatography-mass spectrometry (LC-MS) approach to the analysis of plant lipids. However, only a few investigators have studied the extensive composition of grape lipids. The present work describes the development of an ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method that includes 8098 MRM; the method has been validated using a reference sample of grapes at maturity with a successful analysis and semi-quantification of 412 compounds. The aforementioned method was subsequently applied also to the analysis of the lipid profile variation during the Ribolla Gialla cv. grape maturation process. The partial least squares (PLS) regression model fitted to our experimental data showed that a higher proportion of certain glycerophospholipids (i.e., glycerophosphoethanolamines, PE and glycerophosphoglycerols, PG) and of some hydrolysates from those groups (i.e., lyso-glycerophosphocholines, LPC and lyso-glycerophosphoethanolamines, LPE) can be positively associated with the increasing °Brix rate, while a negative association was found for ceramides (CER) and galactolipids digalactosyldiacylglycerols (DGDG). The validated method has proven to be robust and informative for profiling grape lipids, with the possibility of application to other studies and matrices.

13.
Nat Commun ; 12(1): 3832, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158495

RESUMEN

Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.


Asunto(s)
Biología Computacional/métodos , Iones/metabolismo , Espectrometría de Masas/métodos , Redes y Vías Metabólicas , Metabolómica/métodos , Animales , Internet , Iones/química , Estructura Molecular , Reproducibilidad de los Resultados , Programas Informáticos
14.
Metabolites ; 10(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352793

RESUMEN

The market of olive-based dietary supplements (OBDS) is composed of a broad range of natural extracts claiming different health effects and often sold without a clear statement on their chemical composition. The aim of this survey was to characterize the chemical profiles of 14 commercially available OBDS. As many as 378 compounds were tentatively annotated in the analyzed samples. Although for most of metabolites the annotation at level I was prevented due to the lack of the analytical standard, the spectra obtained from high-resolution tandem mass spectrometry (MS/MS) measurements were very informative, allowing annotation of dozens of metabolites at level II or III. A targeted method allowed the quantification of 26 selected compounds. A large qualitative and quantitative variability was observed. The products obtained from buds by glyceric maceration were those with the lowest concentrations of all the quantified elements. The dose of 5 mg of hydroxytyrosol, corresponding to the European Food Safety Authority (EFSA) health claim, was only reached by four products, all of them originating from the olive fruit or the leaves. If we also take into consideration oleuropein, two additional products provide this daily amount. This work demonstrates the high complexity and diversity in the composition of OBDS.

15.
J Agric Food Chem ; 68(47): 13486-13496, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33169614

RESUMEN

Legumes are an excellent source of nutrients and phytochemicals. They have been recognized for their contributions to health, sustainability, and the economy. Although legumes comprise several species and varieties, little is known about the differences in their phytochemical composition and the magnitude of these. Therefore, the aim of this review is to describe and compare the qualitative profile of phytochemicals contained in legumes and identified through LC-MS and GC-MS methods. Among the 478 phytochemicals reported in 52 varieties of legumes, phenolic compounds were by far the most frequently described (n = 405, 85%). Metabolomics data analysis tools were used to visualize the qualitative differences, showing beans to be the most widely analyzed legumes and those with the highest number of discriminant phytochemicals (n = 180, 38%). A Venn diagram showed that lentils, beans, soybeans, and chickpeas shared only 7% of their compounds. This work highlighted the huge chemical diversity among legumes and identified the need for further research in this field and the use of metabolomics as a promising tool to achieve it.


Asunto(s)
Fabaceae/química , Fitoquímicos/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Fabaceae/clasificación , Espectrometría de Masas
16.
Mol Nutr Food Res ; 64(13): e1901137, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32420683

RESUMEN

SCOPE: To identify reliable biomarkers of food intake (BFIs) of pulses. METHODS AND RESULTS: A randomized crossover postprandial intervention study is conducted on 11 volunteers who consumed lentils, chickpeas, and white beans. Urine and serum samples are collected at distinct postprandial time points up to 48 h, and analyzed by LC-HR-MS untargeted metabolomics. Hypaphorine, trigonelline, several small peptides, and polyphenol-derived metabolites prove to be the most discriminating urinary metabolites. Two arginine-related compounds, dopamine sulfate and epicatechin metabolites, with their microbial derivatives, are identified only after intake of lentils, whereas protocatechuic acid is identified only after consumption of chickpeas. Urinary hydroxyjasmonic and hydroxydihydrojasmonic acids, as well as serum pipecolic acid and methylcysteine, are found after white bean consumption. Most of the metabolites identified in the postprandial study are replicated as discriminants in 24 h urine samples, demonstrating that in this case the use of a single, noninvasive sample is suitable for revealing the consumption of pulses. CONCLUSIONS: The results of the present untargeted metabolomics work reveals a broad list of metabolites that are candidates for use as biomarkers of pulse intake. Further studies are needed to validate these BFIs and to find the best combinations of them to boost their specificity.


Asunto(s)
Biomarcadores/sangre , Biomarcadores/orina , Cicer , Lens (Planta) , Phaseolus , Adulto , Alcaloides/orina , Cromatografía Liquida , Ingestión de Alimentos , Femenino , Humanos , Indoles/orina , Masculino , Espectrometría de Masas , Ácidos Pipecólicos/sangre , Periodo Posprandial , Adulto Joven
17.
Eur J Nutr ; 59(8): 3691-3714, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32103319

RESUMEN

PURPOSE: Validated biomarkers of food intake (BFIs) have recently been suggested as a useful tool to assess adherence to dietary guidelines or compliance in human dietary interventions. Although many new candidate biomarkers have emerged in the last decades for different foods from metabolic profiling studies, the number of comprehensively validated biomarkers of food intake is limited. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fibers, an important mediator for their health-protective properties. METHODS: Using an untargeted metabolomics approach, we aimed to identify biomarkers of long-term apple intake and explore how apples impact on the human plasma and urine metabolite profiles. Forty mildly hypercholesterolemic volunteers consumed two whole apples or a sugar and energy-matched control beverage, daily for 8 weeks in a randomized, controlled, crossover intervention study. The metabolome in plasma and urine samples was analyzed via untargeted metabolomics. RESULTS: We found 61 urine and 9 plasma metabolites being statistically significant after the whole apple intake compared to the control beverage, including several polyphenol metabolites that could be used as BFIs. Furthermore, we identified several endogenous indole and phenylacetyl-glutamine microbial metabolites significantly increasing in urine after apple consumption. The multiomic dataset allowed exploration of the correlations between metabolites modulated significantly by the dietary intervention and fecal microbiota species at genus level, showing interesting interactions between Granulicatella genus and phenyl-acetic acid metabolites. Phloretin glucuronide and phloretin glucuronide sulfate appeared promising biomarkers of apple intake; however, robustness, reliability and stability data are needed for full BFI validation. CONCLUSION: The identified apple BFIs can be used in future studies to assess compliance and to explore their health effects after apple intake. Moreover, the identification of polyphenol microbial metabolites suggests that apple consumption mediates significant gut microbial metabolic activity which should be further explored.


Asunto(s)
Malus , Microbiota , Biomarcadores , Humanos , Polifenoles/análisis , Reproducibilidad de los Resultados , Triptófano , Tirosina
18.
J Agric Food Chem ; 68(7): 1780-1789, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31083905

RESUMEN

The gut microbiota is involved in the regulation of the intestinal permeability (IP), whose disruption is a frequent condition in older people and is associated with the development of several diseases. The diet can affect the gut microbiota and IP, although the molecular mechanisms involved are unclear. Metabolomics is one of the suitable approaches to study the effects of diet on gut microbiota and IP, although, up to now, the research has focused only on a few dietary components. The aim here was to review the most recent literature concerning the application of metabolomics to the study of the diet-induced alterations of gut microbiota and the effects on IP, with a particular focus on the molecular pathways involved. An additional aim was to give a perspective on the future research involving dietary polyphenols, because despite their potential use in the management of increased IP, few studies have been reported to date.


Asunto(s)
Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Polifenoles/metabolismo , Animales , Humanos , Metabolómica , Nutrientes/metabolismo , Permeabilidad
19.
Clin Nutr ; 39(1): 215-224, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30862367

RESUMEN

BACKGROUND & AIMS: The benefits of weight loss in subjects with metabolically healthy obesity (MHO) are still a matter of controversy. We aimed to identify metabolic fingerprints and their associated pathways that discriminate women with MHO with high or low weight loss response after a lifestyle intervention, based on a hypocaloric Mediterranean diet (MedDiet) and physical activity. METHODS: A UPLC-Q-Exactive-MS/MS metabolomics workflow was applied to plasma samples from 27 women with MHO before and after 12 months of a hypocaloric weight loss intervention with a MedDiet and increased physical activity. The subjects were stratified into two age-matched groups according to weight loss: <10% (low weight loss group, LWL) and >10% (high weight loss group, HWL). Random forest analysis was performed to identify metabolites discriminating between the LWL and the HWL as well as within-status effects. Modulated pathways and associations between metabolites and anthropometric and biochemical variables were also investigated. RESULTS: Thirteen metabolites discriminated between the LWL and the HWL, including 1,5-anhydroglucitol, carotenediol, 3-(4-hydroxyphenyl)lactic acid, N-acetylaspartate and several lipid species (steroids, a plasmalogen, sphingomyelins, a bile acid and long-chain acylcarnitines). 1,5-anhydroglucitol, 3-(4-hydroxyphenyl)lactic acid and sphingomyelins were positively associated with weight variables whereas N-acetylaspartate and the plasmalogen correlated negatively with them. Changes in very long-chain acylcarnitines and hydroxyphenyllactic levels were observed in the HWL and positively correlated with fasting glucose, and changes in levels of the plasmalogen negatively correlated with insulin resistance. Additionally, the cholesterol profile was positively associated with changes in acid hydroxyphenyllactic, sphingolipids and 1,5-AG. CONCLUSIONS: Higher weight loss after a hypocaloric MedDiet and increased physical activity for 12 months is associated with changes in the plasma metabolome in women with MHO. These findings are associated with changes in biochemical variables and may suggest an improvement of the cardiometabolic risk profile in those patients that lose greater weight. Further studies are needed to investigate whether the response of those subjects with MHO to this intervention differs from those with unhealthy obesity.


Asunto(s)
Dieta Mediterránea , Ejercicio Físico , Estilo de Vida , Obesidad Metabólica Benigna/sangre , Obesidad Metabólica Benigna/terapia , Pérdida de Peso , Adulto , Femenino , Humanos , Metaboloma , Persona de Mediana Edad , España
20.
Food Res Int ; 126: 108666, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31732019

RESUMEN

Legumes are a well-known source of phytochemicals and are commonly believed to have similar composition between different genera. To date, there are no studies evaluating changes in legumes to discover those compounds that help to discriminate for food quality and authenticity. The aim of this work was to characterize and make a comparative analysis of the composition of bioactive compounds between Cicer arietinum L. (chickpea), Lens culinaris L. (lentil) and Phaseolus vulgaris L. (white bean) through an LC-MS-Orbitrap metabolomic approach to establish which compounds discriminate between the three studied legumes. Untargeted metabolomic analysis was carried out by LC-MS-Orbitrap from extracts of freeze-dried legumes prepared from pre-cooked canned legumes. The metabolomic data treatment and statistical analysis were realized by using MAIT R's package, and final identification and characterization was done using MSn experiments. Fold-change evaluation was made through Metaboanalyst 4.0. Results showed 43 identified and characterized compounds displaying differences between the three legumes. Polyphenols, mainly flavonol and flavanol compounds, were the main group with 30 identified compounds, followed by α-galactosides (n = 5). Fatty acyls, prenol lipids, a nucleoside and organic compounds were also characterized. The fold-change analysis showed flavanols as the wider class of discriminative compounds of lentils compared to the other legumes; prenol lipids and eucomic acids were the most discriminative compounds of beans versus other legumes and several phenolic acids (such as primeveroside salycilic), kaempferol derivatives, coumesterol and α-galactosides were the most discriminative compounds of chickpeas. This study highlights the applicability of metabolomics for evaluating which are the characteristic compounds of the different legumes. In addition, it describes the future application of metabolomics as tool for the quality control of foods and authentication of different kinds of legumes.


Asunto(s)
Cromatografía Liquida/métodos , Fabaceae/química , Fabaceae/metabolismo , Espectrometría de Masas/métodos , Metabolómica/métodos , Flavonoles/análisis , Metaboloma , Polifenoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...