Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med ; 89: 140-146, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34365118

RESUMEN

PURPOSE: Evaluate Acuros® XB dose calculation accuracy following TRS-483 recommendations in small static fields for flattened and un-flattened 6 MV X-ray beams. METHODS: Field output factors were measured following TRS-483 recommendations using four radiation detectors. Two sets of field output factors were measured. One set was used to configure the beam model into Acuros® XB down to a jaw-defined field size of 1.0 cm × 1.0 cm. The second set was used to evaluate the differences between calculated and measured field output factors for MLC-fields down to a field size of 0.5 cm × 0.5 cm. RESULTS: Acuros® XB showed an accuracy within 1.5% down to an MLC-field of 1.0 cm × 1.0 cm, for a focal spot size of 1.0 and 0.0 mm in the cross and in-plane directions. For an MLC-field of 0.5 cm × 0.5 cm, an agreement was found within 3% between calculated and measured field output factors. These results were addressed by optimizing the focal spot size to minimize the differences between calculated and measured dose profiles. CONCLUSIONS: By optimizing the focal spot size, Acuros® XB showed an acceptable agreement within 3% down to an MLC-field of 0.5 cm × 0.5 cm. The results of this work suggest that if static and modulated delivery of very small targets is planned, then a field output factor table down to a field size of 1.0 cm is required in the beam configuration model.


Asunto(s)
Radiometría , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica
2.
J Appl Clin Med Phys ; 19(3): 283-290, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29707904

RESUMEN

PURPOSE: The aim of this work is to investigate the effects of immersing EBT3 radiochromic film in water and to evaluate its contribution to the total uncertainty in dose determination. MATERIALS AND METHODS: We used 3 cm × 3 cm EBT3 radiochromic films irradiated in the range of 0-70 Gy to study the impact of water immersion on the change in net optical density. These films were placed in a water container for a period of 24 h. The net optical density was measured before (0 h) and after of the immersion in water (1, 3, 6, 12, 18, and 24 h). The absorbance spectrum of the EBT3 radiochromic film was measured at 0 h and 24 h after immersion in water. The uncertainty in dose determination due to the effects of keeping the EBT3 radiochromic film submerged in water at 0, 1, and 24 h were recorded in the red, green, and blue channels. RESULTS: We observed an increase in the net optical density as an effect on the film due to its immersion in water. The penetration of the water at the edges of the radiochromic film was observed to be a function of time during which the film remained in the water. On the other hand, the penetration of water at the edges of the film was found to be independent of irradiation dose. CONCLUSIONS: EBT3 radiochromic film is found more resistant to water penetration through the edges than its predecessors. However, there is evidence that suggest that liquid water damage the Nylon cover layer of the film by changing its optical properties. Therefore, it is recommended to build a new calibration curve for radiochromic films for a specific situation involving dose measurements in liquid water.


Asunto(s)
Calibración , Dosimetría por Película/instrumentación , Dosimetría por Película/métodos , Humedad , Agua/química , Humanos , Inmersión , Dosis de Radiación , Incertidumbre
3.
PLoS One ; 13(5): e0196393, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29763446

RESUMEN

Silicon-diode-based detectors are commonly used for the dosimetry of small radiotherapy beams due to their relatively small volumes and high sensitivity to ionizing radiation. Nevertheless, silicon-diode-based detectors tend to over-respond in small fields because of their high density relative to water. For that reason, detector-specific beam correction factors ([Formula: see text]) have been recommended not only to correct the total scatter factors but also to correct the tissue maximum and off-axis ratios. However, the application of [Formula: see text] to in-depth and off-axis locations has not been studied. The goal of this work is to address the impact of the correction factors on the calculated dose distribution in static non-conventional photon beams (specifically, in stereotactic radiosurgery with circular collimators). To achieve this goal, the total scatter factors, tissue maximum, and off-axis ratios were measured with a stereotactic field diode for 4.0-, 10.0-, and 20.0-mm circular collimators. The irradiation was performed with a Novalis® linear accelerator using a 6-MV photon beam. The detector-specific correction factors were calculated and applied to the experimental dosimetry data for in-depth and off-axis locations. The corrected and uncorrected dosimetry data were used to commission a treatment planning system for radiosurgery planning. Various plans were calculated with simulated lesions using the uncorrected and corrected dosimetry. The resulting dose calculations were compared using the gamma index test with several criteria. The results of this work presented important conclusions for the use of detector-specific beam correction factors ([Formula: see text] in a treatment planning system. The use of [Formula: see text] for total scatter factors has an important impact on monitor unit calculation. On the contrary, the use of [Formula: see text] for tissue-maximum and off-axis ratios has not an important impact on the dose distribution calculation by the treatment planning system. This conclusion is only valid for the combination of treatment planning system, detector, and correction factors used in this work; however, this technique can be applied to other treatment planning systems, detectors, and correction factors.


Asunto(s)
Radiocirugia/estadística & datos numéricos , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Simulación por Computador , Humanos , Modelos Estadísticos , Método de Montecarlo , Fotones/uso terapéutico , Radiometría/estadística & datos numéricos , Dosificación Radioterapéutica , Dispersión de Radiación , Siliconas
4.
J Appl Clin Med Phys ; 17(5): 466-481, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27685125

RESUMEN

Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty of the film orientation and film homogeneity.


Asunto(s)
Dosimetría por Película/instrumentación , Modelos Teóricos , Garantía de la Calidad de Atención de Salud/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Calibración , Dosimetría por Película/métodos , Humanos , Dosis de Radiación , Radioterapia de Intensidad Modulada/métodos , Incertidumbre
5.
J Appl Clin Med Phys ; 14(6): 3824, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24257267

RESUMEN

Trigeminal neuralgia (TN) is a chronic, episodic facial pain syndrome that can be extremely intense, and it occurs within the regions of the face that are innervated by the three branches of the trigeminal nerve. Stereotactic radiosurgery (SRS) is the least invasive procedure to treat TN. SRS uses narrow photon beams that require high spatial resolution techniques for their measurement. The use of radiographic or radiochromic films for small-field dosimetry is advantageous because high spatial resolution and two-dimensional dose measurements can be performed. Because these films have different properties, it is expected that the calculated dose distributions for TN patients will behave differently, depending on the detector used for the commissioning of the small photon beams. This work is based on two sets of commissioned data: one commissioned with X-OMAT V2 film and one commissioned with EBT2 film. The calculated dose distributions for 23 TN patients were compared between the commissioning datasets. The variables observed were the differences in the half widths of the 35 and 40 Gy isodose lines (related to the entrance distance to the brainstem) and the volume of the brainstem that received a dose of 12 Gy or more (V12). The results of this comparison showed that there were statistically significant differences between the two calculated dose distributions. The magnitudes of these differences were up to 0.33 mm and 0.38 mm for the 35 and 40 Gy isodose lines. The corresponding difference for the V12 was up to 2.1cc. It is clear that these differences may impact the treatment of TN patients, and then it must be important to perform this type of analysis when observing complication rates. Clinical reports on irradiation techniques for trigeminal neuralgia should consider that different detectors used for commissioning treatment planning systems might result in small but significant differences in dose distributions.


Asunto(s)
Dosimetría por Película/instrumentación , Fotones , Radiocirugia , Planificación de la Radioterapia Asistida por Computador , Neuralgia del Trigémino/cirugía , Femenino , Dosimetría por Película/métodos , Humanos , Masculino , Dosificación Radioterapéutica
6.
Med Phys ; 39(10): 6111-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23039650

RESUMEN

PURPOSE: Radiosurgery uses small fields and high-radiation doses to treat intra- and extracranial lesions in a single session. The lack of a lateral electronic equilibrium and the presence of high-dose gradients in these fields are challenges for adequate measurements. The availability of radiation detectors with the high spatial resolution required is restricted to only a few. Stereotactic diodes and EBT radiochromic films have been demonstrated to be good detectors for small-beam dosimetry. Because the stereotactic diode is the standard measurement for the dosimetry of radiosurgical beams, the goal of this work was to perform measurements with the radiochromic film Gafchromic(®) EBT2 and compare its results with a stereotactic diode. METHODS: Total scatter factors, tissue maximum, and off-axis ratios from a 6 MV small photon beams were measured using EBT2 radiochromic film in a water phantom. The film-measured data were evaluated by comparing it with the data measured with a stereotactic field diode (IBA-Dosimetry). RESULTS: The film and diode measurements had excellent agreement. The differences between the detectors were less than or equal to 2.0% for the tissue maximum and the off-axis ratios. However, for the total scatter factors, there were significant differences, up to 4.9% (relative to the reference field), for field sizes less than 1.0 cm. CONCLUSIONS: This work found that the Gafchromic(®) EBT2 film is adequate for small photon beam measurements, particularly for tissue maximum and off-axis ratios. However, careful attention must be taken when measuring output factors of small beams below 1.0 cm due to the film's energy dependence. The measurement differences may be attributable to the film's active layer composition because EBT2 incorporates higher Z elements (i.e., bromide and potassium), hence revealing a potential energy dependence for the dosimetry of small photon beams.


Asunto(s)
Dosimetría por Película/métodos , Radiocirugia/métodos , Calibración , Dosimetría por Película/instrumentación , Fotones/uso terapéutico , Incertidumbre
7.
Radiother Oncol ; 96(2): 250-3, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20378193

RESUMEN

This work reports the use of both GafChromic EBT film immersed in a water phantom and Monte Carlo (MC) simulations for small photon beam stereotactic radiosurgery dosimetry. Circularly collimated photon beams with diameters in the 4-20 mm range of a dedicated 6 MV linear accelerator (Novalis, BrainLAB, Germany) were used to perform off-axis ratios, tissue maximum ratios and total scatter factors measurements, and MC simulations. GafChromic EBT film data show an excellent agreement with MC results (<2.7%) for all measured quantities.


Asunto(s)
Método de Montecarlo , Fantasmas de Imagen , Fotones , Radiometría/métodos , Agua , Dosimetría por Película/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...